Evaluating the Spatial Distribution of WRF-Simulated Rainfall, 2-m Air Temperature, and 2-m Relative Humidity over the Urban Region of Bangalore, India

Abstract

The present study evaluates the skill of the Weather Research and Forecasting (WRF) model to simulate high-resolution rainfall, 2-m air temperature (T2m), and 2-m relative humidity (RH2m) over the metropolitan city of Bangalore, India. The novelty of the present study is that the WRF model simulations were carried out for ten different rain intensities during the monsoon season and compared with in situ observations from a high-density rain gauge network (81 rain gauge stations) and automatic weather stations (AWS) located over Bangalore. Our analysis shows that the model underestimated (bias score < 1) rainfall for most (87%) of the stations, and the model accuracy in the forecasting of rainfall was more than 70% for 16% of stations in the city. The RMSE values ranged between 18 and 28 mm/day for most of the rainfall events. Our analysis also found that the underestimation of the convective available potential energy (CAPE < 2000 J/kg) may be a possible reason for the simulation of low-intensity rainfall (< 10 mm/day) in most of the stations in Bangalore. In the case of T2m and RH2m simulations, the model closely matched the observed values [bias: T2m (−1 °C to 1 °C), Rh2m (0–10%)] for most of the AWS, while the model showed cold (−4.5 °C) and moist bias (19%) for the industrial area of Begur station. Proper representation of the urban morphology, air pollution, and anthropogenic heat data in the WRF modeling system may improve the model skill to capture the spatial variability in rainfall, T2m, and RH2m over highly urbanized cities in India.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ajilesh, P., et al. (2020). Observed and model-simulated thermodynamic processes associated with urban heavy rainfall events over Bangalore, India. Meteorological Applications, 27(1), e1854.

    Article  Google Scholar 

  2. Ali, H., Mishra, V., & Pai, D. S. (2014). Observed and projected urban extreme rainfall events in India. Journal of Geophysical Research: Atmospheres, 119(22), 12–621.

    Google Scholar 

  3. Chang, H. I., Kumar, A., Niyogi, D., Mohanty, U. C., Chen, F., & Dudhia, J. (2009). The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Global and Planetary Change, 67(1–2), 87–103.

    Article  Google Scholar 

  4. Changnon, S. A., Jr., & Huff, F. A. (1986). The urban-related nocturnal rainfall anomaly at St. Louis. Journal of Climate and Applied Meteorology, 25(12), 1985–1995.

    Article  Google Scholar 

  5. Changnon, S. A., Shealy, R. T., & Scott, R. W. (1991). Precipitation changes in fall, winter, and spring caused by St. Louis. Journal of Applied Meteorology, 30(1), 126–134.

    Article  Google Scholar 

  6. Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., et al. (2011). The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273–288.

    Article  Google Scholar 

  7. Diem, J. E., & Mote, T. L. (2005). Interepochal changes in summer precipitation in the southeastern United States: Evidence of possible urban effects near Atlanta, Georgia. Journal of Applied Meteorology, 44(5), 717–730.

    Article  Google Scholar 

  8. Ghosh, S., Das, D., Kao, S. C., & Ganguly, A. R. (2012). Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Climate Change, 2(2), 86.

    Article  Google Scholar 

  9. Goswami, P., Rakesh, V., Patra, G. K., & Prakash, V. S. (2012). Real-time quantitative rainfall forecasts at hobli-level over Karnataka: evaluation for the winter monsoon 2010. Current Science, 102(10), 1426–1433.

    Google Scholar 

  10. Goswami, P., Shivappa, H., & Goud, B. S. (2010). Impact of urbanization on tropical mesoscale events: investigation of three heavy rainfall events. Meteorologische Zeitschrift, 19(4), 385–397.

    Article  Google Scholar 

  11. Goswami, P., Shivappa, H., & Goud, S. (2012). Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteorological Applications, 19(2), 170–178.

    Article  Google Scholar 

  12. Guo, X., Fu, D., & Wang, J. (2006). Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmospheric Research, 82(1–2), 112–126.

    Article  Google Scholar 

  13. Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 17–30.

    Article  Google Scholar 

  14. Huff, F. A., & Changnon, S. A., Jr. (1973). Precipitation modification by major urban areas. Bulletin of the American Meteorological Society, 54(12), 1220–1233.

    Article  Google Scholar 

  15. Jin, M., & Shepherd, J. M. (2008). Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: Urban land versus ocean. Journal of Geophysical Research: Atmospheres, 113(D24), 1–12.

    Article  Google Scholar 

  16. Kesarkar, A. P., Dalvi, M., Kaginalkar, A., & Ojha, A. (2007). Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modelling. A case study for PM10 dispersion over Pune, India. Atmospheric Environment, 41(9), 1976–1988.

    Article  Google Scholar 

  17. Kharol, S. K., Kaskaoutis, D. G., Badarinath, K. V. S., Sharma, A. R., & Singh, R. P. (2013). Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. Journal of Arid Environments, 88, 90–101.

    Article  Google Scholar 

  18. Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A., Sr., & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology, 30(13), 1908–1916.

    Article  Google Scholar 

  19. Kumar, P., Kishtawal, C. M., & Pal, P. K. (2017). Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region. Theoretical and Applied Climatology, 127(1–2), 143–151.

    Article  Google Scholar 

  20. Kusaka, H., & Kimura, F. (2004). Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. Journal of the Meteorological Society of Japan Ser. II, 82(1), 67–80.

    Article  Google Scholar 

  21. Li, W., Chen, S., Chen, G., Sha, W., Luo, C., Feng, Y., et al. (2011). Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environmental Research Letters, 6(3), 034020.

    Article  Google Scholar 

  22. Li, X., Mitra, C., Dong, L., & Yang, Q. (2018). Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model. Physics and Chemistry of the Earth, Parts A/B/C, 103, 115–126.

    Article  Google Scholar 

  23. Liang, P., & Ding, Y. (2017). The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014. Advances in Atmospheric Sciences, 34(3), 321–334.

    Article  Google Scholar 

  24. Liao, J., Wang, T., Jiang, Z., Zhuang, B., Xie, M., Yin, C., et al. (2015). WRF/Chem modeling of the impacts of urban expansion on regional climate and air pollutants in Yangtze River Delta, China. Atmospheric Environment, 106, 204–214.

    Article  Google Scholar 

  25. Lin, C. Y., Chen, W. C., Chang, P. L., & Sheng, Y. F. (2011). Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. Journal of Applied Meteorology and Climatology, 50(2), 339–353.

    Article  Google Scholar 

  26. Lin, C. Y., Su, C. J., Kusaka, H., Akimoto, Y., Sheng, Y. F., Huang, C., Jr., & Hsu, H. H. (2016). Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric Chemistry and Physics, 16(3), 1809–1822.

    Article  Google Scholar 

  27. Lin, W., Zhang, L., Du, D., Yang, L., Lin, H., Zhang, Y., & Li, J. (2009). Quantification of land use/land cover changes in Pearl River Delta and its impact on regional climate in summer using numerical modeling. Regional Environmental Change, 9(2), 75–82.

    Article  Google Scholar 

  28. Mahmood, R., Pielke, R. A., Sr., Hubbard, K. G., Niyogi, D., Bonan, G., Lawrence, P., et al. (2010). Impacts of land use/land cover change on climate and future research priorities. Bulletin of the American Meteorological Society, 91(1), 37–46.

    Article  Google Scholar 

  29. Miao, S., Chen, F., Li, Q., & Fan, S. (2011). Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. Journal of Applied Meteorology and Climatology, 50(4), 806–825.

    Article  Google Scholar 

  30. Mitra, C., Shepherd, J. M., & Jordan, T. (2012). On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. International Journal of Climatology, 32(9), 1443–1454.

    Article  Google Scholar 

  31. Mohan, M., & Bhati, S. (2011). Analysis of WRF model performance over subtropical region of Delhi, India. Advances in Meteorology, 2011, 1–13.

    Article  Google Scholar 

  32. Mohan, M., & Gupta, M. (2018). Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmospheric Environment, 185, 53–63.

    Article  Google Scholar 

  33. Mohapatra, G. N., Rakesh, V., & Ramesh, K. V. (2017). Urban extreme rainfall events: categorical skill of WRF model simulations for localized and non-localized events. Quarterly Journal of the Royal Meteorological Society, 143(707), 2340–2351.

    Article  Google Scholar 

  34. Müller, O. V., Lovino, M. A., & Berbery, E. H. (2016). Evaluation of WRF model forecasts and their use for hydroclimate monitoring over southern South America. Weather and Forecasting, 31(3), 1001–1017.

    Article  Google Scholar 

  35. Niyogi, D., Lei, M., Kishtawal, C., Schmid, P., & Shepherd, M. (2017). Urbanization impacts on the summer heavy rainfall climatology over the eastern United States. Earth Interactions, 21(5), 1–17.

    Article  Google Scholar 

  36. Niyogi, D., Pyle, P., Lei, M., Arya, S. P., Kishtawal, C. M., Shepherd, M., et al. (2011). Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology, 50(5), 1129–1144.

    Article  Google Scholar 

  37. Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769–779.

    Article  Google Scholar 

  38. Oke, T. R. (1995). The heat island of the urban boundary layer: characteristics, causes and effects. Wind climate in cities (pp. 81–107). Dordrecht: Springer.

    Google Scholar 

  39. Pathirana, A., Denekew, H. B., Veerbeek, W., Zevenbergen, C., & Banda, A. T. (2014). Impact of urban growth-driven landuse change on microclimate and extreme precipitation—a sensitivity study. Atmospheric Research, 138, 59–72.

    Article  Google Scholar 

  40. Paul, S., Ghosh, S., Mathew, M., Devanand, A., Karmakar, S., & Niyogi, D. (2018). Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  41. Pielke, R. A., Sr., Adegoke, J., BeltraáN-Przekurat, A., Hiemstra, C. A., Lin, J., Nair, U. S., et al. (2007). An overview of regional land-use and land-cover impacts on rainfall. Tellus B: Chemical and Physical Meteorology, 59(3), 587–601.

    Article  Google Scholar 

  42. Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90.

    Article  Google Scholar 

  43. Rakesh, V., Goswami, P., & Prakash, V. S. (2015). Evaluation of high resolution rainfall forecasts over Karnataka for the 2011 southwest and northeast monsoon seasons. Meteorological Applications, 22(1), 37–47.

    Article  Google Scholar 

  44. Rakesh, V., & Kantharao, B. (2017). Impact of assimilation on heavy rainfall simulations using WRF model: Sensitivity of assimilation results to background error statistics. Pure and Applied Geophysics, 174(3), 1385–1398.

    Article  Google Scholar 

  45. Rao, B. K., & Rakesh, V. (2019). Evaluation of WRF-simulated multilevel soil moisture, 2-m air temperature, and 2-m relative humidity against in situ observations in India. Pure and Applied Geophysics, 176(4), 1807–1826.

    Article  Google Scholar 

  46. Sannigrahi, S., Rahmat, S., Chakraborti, S., Bhatt, S., & Jha, S. (2017). Changing dynamics of urban biophysical composition and its impact on urban heat island intensity and thermal characteristics: the case of Hyderabad City, India. Modeling Earth Systems and Environment, 3(2), 647–667.

    Article  Google Scholar 

  47. Sarangi, C., Tripathi, S. N., Qian, Y., Kumar, S., & Ruby Leung, L. (2018). Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic Basin from observations and cloud resolving model simulations. Journal of Geophysical Research: Atmospheres, 123(7), 3645–3667.

    Google Scholar 

  48. Sati, A. P., & Mohan, M. (2018). The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India. Theoretical and Applied Climatology, 134(1–2), 309–323.

    Article  Google Scholar 

  49. Schmid, P. E., & Niyogi, D. (2013). Impact of city size on precipitation-modifying potential. Geophysical Research Letters, 40(19), 5263–5267.

    Article  Google Scholar 

  50. Schubert, S., Grossman-Clarke, S., & Martilli, A. (2012). A double-canyon radiation scheme for multi-layer urban canopy models. Boundary-Layer Meteorology, 145(3), 439–468.

    Article  Google Scholar 

  51. Sharma, A., Fernando, H. J., Hamlet, A. F., Hellmann, J. J., Barlage, M., & Chen, F. (2017). Urban meteorological modeling using WRF: a sensitivity study. International Journal of Climatology, 37(4), 1885–1900.

    Article  Google Scholar 

  52. Shastri, H., Paul, S., Ghosh, S., & Karmakar, S. (2015). Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres, 120(2), 496–516.

    Google Scholar 

  53. Shem, W., & Shepherd, M. (2009). On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies. Atmospheric Research, 92(2), 172–189.

    Article  Google Scholar 

  54. Shepherd, J. M. (2006). Evidence of urban-induced precipitation variability in arid climate regimes. Journal of Arid Environments, 67(4), 607–628.

    Article  Google Scholar 

  55. Shepherd, J. M., Carter, M., Manyin, M., Messen, D., & Burian, S. (2010). The impact of urbanization on current and future coastal precipitation: a case study for Houston. Environment and Planning B: Planning and Design, 37(2), 284–304.

    Article  Google Scholar 

  56. Shepherd, J. M., Pierce, H., & Negri, A. J. (2002). Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology, 41(7), 689–701.

    Article  Google Scholar 

  57. Simpson, M., Raman, S., Suresh, R., & Mohanty, U. C. (2008). Urban effects of Chennai on sea breeze induced convection and precipitation. Journal of Earth System Science, 117(6), 897–909.

    Article  Google Scholar 

  58. Singh, J., Vittal, H., Karmakar, S., Ghosh, S., & Niyogi, D. (2016). Urbanization causes nonstationarity in Indian summer monsoon rainfall extremes. Geophysical Research Letters, 43(21), 11–269.

    Article  Google Scholar 

  59. Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114.

    Article  Google Scholar 

  60. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W. & Powers, J.G. 2008. A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.

  61. Srivastava, P., & Sharan, M. (2017). An analytical formulation of the Monin-Obukhov stability parameter in the atmospheric surface layer under unstable conditions. Boundary-Layer Meteorology, 165(2), 371–384.

    Article  Google Scholar 

  62. UN. (2018). https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html.

  63. Wang, X., Liao, J., Zhang, J., Shen, C., Chen, W., Xia, B., & Wang, T. (2014). A numeric study of regional climate change induced by urban expansion in the Pearl River Delta, China. Journal of Applied Meteorology and Climatology, 53(2), 346–362.

    Article  Google Scholar 

  64. Weng, Q., & Lu, D. (2008). A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. International Journal of Applied Earth Observation and Geoinformation, 10(1), 68–83.

    Article  Google Scholar 

  65. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). New York: Academic.

    Google Scholar 

  66. Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147–156.

    Article  Google Scholar 

  67. Yang, B., Zhang, Y., & Qian, Y. (2012). Simulation of urban climate with high-resolution WRF model: a case study in Nanjing, China. Asia-Pacific Journal of Atmospheric Sciences, 48(3), 227–241.

    Article  Google Scholar 

  68. Yang, L., Tian, F., Smith, J. A., & Hu, H. (2014). Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. Journal of Geophysical Research: Atmospheres, 119(3), 1203–1217.

    Google Scholar 

  69. Zhang, C.L., Chen, F., Miao, S.G., Li, Q.C., Xia, X.A. & Xuan, C.Y. 2009. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. Journal of Geophysical Research: Atmospheres, 114(D2).

  70. Zhang, N., Gao, Z., Wang, X., & Chen, Y. (2010). Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theoretical and Applied Climatology, 102(3–4), 331–342.

    Article  Google Scholar 

  71. Zhang, Y., Olsen, S. C., & Dubey, M. K. (2010). WRF/Chem simulated springtime impact of rising Asian emissions on air quality over the US. Atmospheric Environment, 44(24), 2799–2812.

    Article  Google Scholar 

  72. Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2015). Impacts of urbanization on flooding of a coastal urban catchment: a case study of Mumbai City, India. Natural Hazards, 75(1), 887–908.

    Article  Google Scholar 

  73. Shepherd, J.M., 2006. Evidence of urban-induced precipitation variability in arid climate regimes. Journal of Arid Environments, 67(4), pp.607-628.

Download references

Acknowledgements

The authors are grateful to the Karnataka State Natural Disaster Monitoring Center (http://www.ksndmc.org/default.aspx), India, for providing the ground-based meteorological data. The CSIR-4PI high-performance computing (HPC) facility used for computing is acknowledged gratefully. The authors also acknowledge the support and encouragement of the Head CSIR 4PI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kantha Rao Bhimala.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhimala, K.R., Gouda, K.C. & Himesh, S. Evaluating the Spatial Distribution of WRF-Simulated Rainfall, 2-m Air Temperature, and 2-m Relative Humidity over the Urban Region of Bangalore, India. Pure Appl. Geophys. (2021). https://doi.org/10.1007/s00024-021-02676-4

Download citation

Keywords

  • WRF
  • rainfall
  • 2-m temperature
  • 2-m relative humidity
  • urbanization