Temporal Analysis for Detection of Anomalies in Precipitation Patterns over a Selected Area in the Indus Basin of Pakistan

Abstract

For efficient adaptation strategies, investigation of the variability in climatic data and its impact on meteorological drought is critical, particularly in semi-arid and arid regions. Innovative trend analysis (ITA), Mann–Kendall (MK) and Sen’s slope estimator (SSE) tests were employed to analyze the variations in precipitation (1981–2018) on annual, seasonal and monthly scale across 12 meteorological stations over the selected areas of the lower Indus basin (LIB) of Pakistan. The reliability of the ITA method was also compared and analyzed with both MK and SSE methods for 48 seasonal precipitation times series. Annual precipitation results indicated a significant increasing trend, i.e., 2.09 mm/year, at only one station (Rahim Yar Khan (RYK)-Khanpur), with MK test statistic Zmk = 2.09 and Sen’s slope estimator β = 2.56. On a monthly scale, the maximum number of positive significant trends were noted during June, with Zmk values of 2.01 to 3.24 and β values of 1.06–3.06, while the maximum number of negative trends was found during January, February, November and December. On a seasonal scale, ITA methods showed significant increasing trends during the summer at 12 selected meteorological stations, with trend indicator (B) values ranging from 0.22 to 2.46. Moreover, performance of the ITA method was found to be consistent with both MK and SSE test results at a verified significance level. The results of the study can help to increase our understanding of the annual, seasonal and monthly precipitation variability in the LIB that may be helpful in developing strategies for the proper management of water resources over the area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The climatic and groundwater data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ahmad, W., Fatima, A., Awan, U. K., & Anwar, A. (2014). Analysis of long term meteorological trends in the middle and lower Indus Basin of Pakistan—A non-parametric statistical approach. Global and Planetary Change, 122, 282–291. https://doi.org/10.1016/j.gloplacha.2014.09.007.

    Article  Google Scholar 

  2. Ahmad, I., Tang, D., Wang, T., Wang, M., & Wagan, B. (2015). Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in Swat River Basin, Pakistan. Advances in Meteorology. https://doi.org/10.1155/2015/431860.

    Article  Google Scholar 

  3. Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J., & Farid, H. U. (2018a). Spatiotemporal analysis of precipitation variability in seasonal, annual and extreme values over upper Indus River basin. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2018.06.019.

    Article  Google Scholar 

  4. Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J., & Saddique, Q. (2018b). Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2018.06.019.

    Article  Google Scholar 

  5. Ali, S., Khalid, B., Kiani, R. S., Babar, R., Nasir, S., Rehman, N., & Goheer, M. A. (2020). Spatio-temporal variability of summer monsoon onset over Pakistan. Asia-Pacific Journal of Atmospheric Sciences, 56(1), 147–172. https://doi.org/10.1007/s13143-019-00130-z.

    Article  Google Scholar 

  6. Anjum, M. N., Ding, Y., Shangguan, D., Ahmad, I., Ijaz, M. W., Farid, H. U., & Adnan, M. (2018). Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmospheric Research, 205, 134–146. https://doi.org/10.1016/J.ATMOSRES.2018.02.010.

    Article  Google Scholar 

  7. Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002.

    Article  Google Scholar 

  8. Ay, M., & Kisi, O. (2015). Investigation of trend analysis of monthly total precipitation by an innovative method. Theoretical and Applied Climatology, 120(3–4), 617–629. https://doi.org/10.1007/s00704-014-1198-8.

    Article  Google Scholar 

  9. Caloiero, T., Coscarelli, R., & Ferrari, E. (2020). Assessment of seasonal and annual rainfall trend in Calabria (southern Italy) with the ITA method. Journal of Hydroinformatics, 22(4), 738–748. https://doi.org/10.2166/hydro.2019.138.

    Article  Google Scholar 

  10. Cheema, M. J. M., Immerzeel, W. W., & Bastiaanssen, W. G. M. (2014). Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Groundwater, 52(1), 25–36. https://doi.org/10.1111/gwat.12027.

    Article  Google Scholar 

  11. Chen, P. C., Wang, Y. H., You, G. J. Y., & Wei, C. C. (2017). Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan. Journal of Hydrology, 545, 197–211. https://doi.org/10.1016/j.jhydrol.2016.12.001.

    Article  Google Scholar 

  12. Chowdhury, R. K., Beecham, S., Boland, J., & Piantadosi, J. (2015). Understanding South Australian rainfall trends and step changes. International Journal of Climatology, 35(3), 348–360. https://doi.org/10.1002/joc.3982.

    Article  Google Scholar 

  13. Cluis, D., Langlois, C., van Coillie, R., & Laberge, C. (1989). Development of a software package for trend detection in temporal series: Application to water and industrial effluent quality data for the St. Lawrence River. Environmental Monitoring and Assessment, 13(2–3), 429–441. https://doi.org/10.1007/BF00394243.

    Article  Google Scholar 

  14. Daughney, C. J., & Reeves, R. R. (2006). Analysis of temporal trends in New Zealand’s groundwater quality based on data from the National Groundwater Monitoring Programme. Journal of Hydrology (New Zealand). New Zealand Hydrological Society. https://doi.org/10.2307/43944938.

    Article  Google Scholar 

  15. Djaman, K., Balde, A. B., Rudnick, D. R., Ndiaye, O., & Irmak, S. (2017). Long-term trend analysis in climate variables and agricultural adaptation strategies to climate change in the Senegal River Basin. International Journal of Climatology, 37(6), 2873–2888. https://doi.org/10.1002/joc.4885.

    Article  Google Scholar 

  16. Elouissi, A., Şen, Z., & Habi, M. (2016). Algerian rainfall innovative trend analysis and its implications to Macta watershed. Arabian Journal of Geosciences, 9(4), 1–12. https://doi.org/10.1007/s12517-016-2325-x.

    Article  Google Scholar 

  17. Farid, H. U., Ahmad, I., Anjum, M. N., Khan, Z. M., Iqbal, M. M., Shakoor, A., & Mubeen, M. (2019). Assessing seasonal and long-term changes in groundwater quality due to over-abstraction using geostatistical techniques. Environmental Earth Sciences, 78(13), 386. https://doi.org/10.1007/s12665-019-8373-2.

    Article  Google Scholar 

  18. Farooqi, A. B., Khan, A. H., & Mir, H. (2005). Climate change perspective in Pakistan. Pakistan Journal of Meteorology, 2(3), 1–11.

    Google Scholar 

  19. Girma, A., Qin, T., Wang, H., Yan, D., Gedefaw, M., Abiyu, A., & Batsuren, D. (2020). Study on recent trends of climate variability using innovative trend analysis: The case of the upper huai river basin. Polish Journal of Environmental Studies, 29(3), 2199–2210. https://doi.org/10.15244/pjoes/103448.

    Article  Google Scholar 

  20. Haider, S., & Adnan, S. (2014). Classification and assessment of aridity over Pakistan Provinces (1960–2009). International Journal of Environment, 3(4), 24–35. https://doi.org/10.3126/ije.v3i4.11728.

    Article  Google Scholar 

  21. Haider, H., Zaman, M., Liu, S., Saifullah, M., Usman, M., Chauhdary, J. N., & Waseem, M. (2020). Appraisal of climate change and its impact on water resources of pakistan: a case study of Mangla Watershed. Atmosphere, 11(10), 1071. https://doi.org/10.3390/atmos11101071.

    Article  Google Scholar 

  22. Hartmann, H., & Andresky, L. (2013). Flooding in the Indus River basin - A spatiotemporal analysis of precipitation records. Global and Planetary Change, 107, 25–35. https://doi.org/10.1016/j.gloplacha.2013.04.002.

    Article  Google Scholar 

  23. Hasson, S., Böhner, J., & Lucarini, V. (2015). Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin. Earth System Dynamics Discussion, 6(1), 579–653. https://doi.org/10.5194/esdd-6-579-2015.

    Article  Google Scholar 

  24. Hasson, S., Lucarini, V., Khan, M. R., Petitta, M., Bolch, T., & Gioli, G. (2014). Early 21st century snow cover state over the western river basins of the Indus River system. Hydrology and Earth System Sciences, 18(10), 4077–4100. https://doi.org/10.5194/hess-18-4077-2014.

    Article  Google Scholar 

  25. Huang, J., Sun, S., & Zhang, J. (2013). Detection of trends in precipitation during 1960–2008 in Jiangxi province, southeast China. Theoretical and Applied Climatology, 114(1–2), 237–251. https://doi.org/10.1007/s00704-013-0831-2.

    Article  Google Scholar 

  26. Huang, Y., Wang, H., Xiao, W., Chen, L. H., Yan, D. H., Zhou, Y. Y., & Yang, M. Z. (2018). Spatial and temporal variability in the precipitation concentration in the upper reaches of the Hongshui River Basin, Southwestern China. Advances in Meteorology. https://doi.org/10.1155/2018/4329757.

    Article  Google Scholar 

  27. Imran, A., Zaman, Q., Rasul, G., & Mahmood, A. (2014). An analytical study of variations in the monsoon patterns over Pakistan. Pakistan Journal of Meteorology, 10(20), 25–37.

    Google Scholar 

  28. IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. (C. Field, V. Barros, T. Stocker, D. Dokken, & G. Plattner, Eds.). https://doi.org/10.1596/978-0-8213-8845-7

  29. Jadoon, S. U. R. K., Lin, D., Ehsan, S. A., Jadoon, I. A. K., & Idrees, M. (2020). Structural styles, hydrocarbon prospects, and potential of Miano and Kadanwari fields, Central Indus Basin, Pakistan. Arabian Journal of Geosciences, 13(2), 1–13. https://doi.org/10.1007/s12517-020-5122-5.

    Article  Google Scholar 

  30. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93. https://doi.org/10.1093/biomet/30.1-2.81.

    Article  Google Scholar 

  31. Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the upper Indus River basin in Pakistan. Climate Research, 46(2), 103–119. https://doi.org/10.3354/cr00957.

    Article  Google Scholar 

  32. Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Scientific Reports, 8(1), 1–18. https://doi.org/10.1038/s41598-018-21848-2.

    Article  Google Scholar 

  33. Kumar, M., Denis, D. M., & Suryavanshi, S. (2016). Long-term climatic trend analysis of Giridih district, Jharkhand (India) using statistical approach. Modeling Earth Systems and Environment, 2(3), 1–10. https://doi.org/10.1007/s40808-016-0162-2.

    Article  Google Scholar 

  34. Latif, Y., Yaoming, M., & Yaseen, M. (2018). Spatial analysis of precipitation time series over the Upper Indus Basin. Theoretical and Applied Climatology, 131(1–2), 761–775. https://doi.org/10.1007/s00704-016-2007-3.

    Article  Google Scholar 

  35. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3), 245–259.

    Article  Google Scholar 

  36. Martínez-Austria, P. F., Bandala, E. R., & Patiño-Gómez, C. (2016). Temperature and heat wave trends in northwest Mexico. Physics and Chemistry of the Earth, 91, 20–26. https://doi.org/10.1016/j.pce.2015.07.005.

    Article  Google Scholar 

  37. Muhammad Qasim, S. K. (2013). Hydro-meteorological characteristics of Indus River Basin at extreme North of Pakistan. Journal of Earth Science & Climatic Change, 05(01), 1–6. https://doi.org/10.4172/2157-7617.1000170.

    Article  Google Scholar 

  38. Onyutha, C. (2016). Identification of sub-trends from hydro-meteorological series. Stochastic Environmental Research and Risk Assessment, 30(1), 189–205. https://doi.org/10.1007/s00477-015-1070-0.

    Article  Google Scholar 

  39. Palizdan, N., Falamarzi, Y., Huang, Y. F., & Lee, T. S. (2017). Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stochastic Environmental Research and Risk Assessment, 31(4), 853–877. https://doi.org/10.1007/s00477-016-1261-3.

    Article  Google Scholar 

  40. Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011–2026. https://doi.org/10.1002/hyp.5993.

    Article  Google Scholar 

  41. Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2016). Trend analysis of climatic variables in an arid and semi-arid region of the Ajmer District, Rajasthan, India. Journal of Water and Land Development, 28(1), 3–18. https://doi.org/10.1515/jwld-2016-0001.

    Article  Google Scholar 

  42. Rasul, G. (2012). Climate Data and Modelling Analysis of the Indus Region. Pakistan Meteorological Department (PMD). http://wwfpak.org/ccap/pdf/ClimateDataModellingAnalysis of the Indus Ecoregion.pdf. Accessed 14 Aug 2020.

  43. Saini, A., Sahu, N., Kumar, P., Nayak, S., Duan, W., Avtar, R., & Behera, S. (2020). Advanced rainfall trend analysis of 117 years over West Coast Plain and Hill Agro-climatic region of India. Atmosphere, 11(11), 1225. https://doi.org/10.3390/atmos11111225.

    Article  Google Scholar 

  44. Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556.

    Article  Google Scholar 

  45. Shi, P., Ma, X., Chen, X., Qu, S., & Zhang, Z. (2013). Analysis of variation trends in precipitation in an upstream catchment of Huai River. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/929383.

    Article  Google Scholar 

  46. Srivastava, P. K., Islam, T., Gupta, M., Petropoulos, G., & Dai, Q. (2015). WRF Dynamical downscaling and bias correction schemes for NCEP estimated hydro-meteorological variables. Water Resources Management, 29(7), 2267–2284. https://doi.org/10.1007/s11269-015-0940-z.

    Article  Google Scholar 

  47. Tosunoglu, F., & Kisi, O. (2017). Trend analysis of maximum hydrologic drought variables using Mann-Kendall and Şen’s innovative trend method. River Research and Applications, 33(4), 597–610. https://doi.org/10.1002/rra.3106.

    Article  Google Scholar 

  48. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953.

    Article  Google Scholar 

  49. Wang, Y., Xu, Y., Tabari, H., Wang, J., Wang, Q., Song, S., & Hu, Z. (2020). Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 231, 104673. https://doi.org/10.1016/j.atmosres.2019.104673.

    Article  Google Scholar 

  50. Waseem, M., Ahmad, I., Mujtaba, A., Tayyab, M., Si, C., Lü, H., & Dong, X. (2020). Spatiotemporal dynamics of precipitation in southwest arid-agriculture zones of Pakistan. Sustainability, 12(6), 2305. https://doi.org/10.3390/su12062305.

    Article  Google Scholar 

  51. Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592. https://doi.org/10.1002/joc.4866.

    Article  Google Scholar 

  52. Yang, X. L., Xu, L. R., Liu, K. K., Li, C. H., Hu, J., & Xia, X. H. (2012). Trends in temperature and precipitation in the Zhangweinan River Basin during the last 53 Years. Procedia Environmental Sciences, 13(2011), 1966–1974. https://doi.org/10.1016/j.proenv.2012.01.190.

    Article  Google Scholar 

  53. Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7.

    Article  Google Scholar 

  54. Zaman, M., Ahmad, I., Usman, M., Saifullah, M., Anjum, M. N., Khan, M. I., & Uzair Qamar, M. (2020). Event-based time distribution patterns, return levels, and their trends of extreme precipitation across Indus Basin. Water, 12(12), 3373. https://doi.org/10.3390/w12123373.

    Article  Google Scholar 

  55. Zaman, M., Naveed Anjum, M., Usman, M., Ahmad, I., Saifullah, M., Yuan, S., & Liu, S. (2018a). Enumerating the effects of climate change on water resources using GCM Scenarios at the Xin’anjiang Watershed, China. Water, 10(10), 1296. https://doi.org/10.3390/w10101296.

    Article  Google Scholar 

  56. Zaman, M., Yuan, S., Liu, J., Ahmad, I., Sultan, M., Qamar, M. U., & Ali, I. (2018b). Investigating hydrological responses and adaptive operation of a hydropower station under a climate change scenario. Polish Journal of Environmental Studies, 27(5), 2337–2348. https://doi.org/10.15244/pjoes/78678.

    Article  Google Scholar 

  57. Zaman, M., Yuan, S., Liu, J., Usman, M., Ahmad, I., Chandio, F. A., & Adnan, M. (2017). Quantifying the effect of climate change on precipitation and temperature patterns by using variant of. Fresenius Environmental Bulletin, 26, 7419–7431.

    Google Scholar 

  58. Zang, C., & Liu, J. (2013). Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. Journal of Hydrology, 502, 27–36. https://doi.org/10.1016/j.jhydrol.2013.08.022.

    Article  Google Scholar 

  59. Zhao, Y., Xu, X., Huang, W., Wang, Y., Xu, Y., Chen, H., & Kang, Z. (2019). Trends in observed mean and extreme precipitation within the Yellow River Basin, China. Theoretical and Applied Climatology, 136(3–4), 1387–1396. https://doi.org/10.1007/s00704-018-2568-4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Pakistan Meteorological Department Karachi for providing the climatic data and Department Agricultural Engineering, Bahauddin Zakariya University, Multan, for providing the facilities for data collection and analysis.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, HUF, ZMK, IA, MNA, MM and AS. This revised version of the manuscript was written by AA, HUF and IA and reviewed by ZM.K and MM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ijaz Ahmad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest with regard to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Farid, H.U., Khan, Z.M. et al. Temporal Analysis for Detection of Anomalies in Precipitation Patterns over a Selected Area in the Indus Basin of Pakistan. Pure Appl. Geophys. 178, 651–669 (2021). https://doi.org/10.1007/s00024-021-02671-9

Download citation

Keywords

  • Climate change
  • precipitation variability
  • LIB
  • trend analysis
  • water resources management