Deterministic Seismic Hazard Analysis for the Northwestern Part of Haryana State, India, Considering Various Seismicity Levels

Abstract

This study quantifies seismic hazard using a deterministic framework for the northwestern part of India, where a new nuclear power plant (NPP) is going to be built in the near future. The region of interest is situated about 200 km from the Himalayan thrust, home of many great earthquakes including the 1897 Shillong, 1905 Kangra, 1934 Bihar–Nepal, 1950 Arunachal Pradesh, and 2011 Sikkim events. This region has also witnessed six intraplate earthquakes of magnitude greater than 6 in the past two centuries. Therefore, considering the past seismicity and importance of the facility, seismic investigation is performed in the seismic control region over a radius of 300 km from the boundary of the NPP to identify active faults and lineaments. Then the seismotectonic map is prepared by compiling the earthquake data of magnitude ≥ 3 and dividing the source region into regions I and II to represent the interplate and intraplate seismicity. Eight well-recognized attenuation models are considered to estimate the ground motion characteristics at the bedrock level. The captured earthquake hazard for three earthquake scenarios reveals different seismicity levels of sources from low to high using the logic tree approach. The developed hazard maps show spatial variation of 50th and 84th percentile peak ground acceleration (PGA) for three scenarios. The maximum PGA for the three respective scenarios is obtained as 0.088 g, 0.110 g, and 0.151 g. The corresponding deterministic response spectra are also presented for all cases, and the present hazard values are found to be higher than those quoted by previous researchers. The results obtained in this article will be very useful for preparing hazard index maps of the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. AERB (Atomic Energy Regulatory Board). (1990). Seismic studies and design basis ground motion for nuclear power plant sites. Standard AERB/SG/S-11, AERB, India.

  2. Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81(2), 195–206.

    Google Scholar 

  3. Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of earthquake engineering, 12(1), 359–387.

    Google Scholar 

  4. Ambraseys, N., & Bilham, R. (2000). A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Current Science, 79(1), 45–50.

    Google Scholar 

  5. Anbazhagan, P., Bajaj, K., Dutta, N., Moustafa, S. S., & Al-Arifi, N. S. (2017). Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city. Journal of Earth System Science, 126(1), 12.

    Google Scholar 

  6. Anbazhagan, P., Bajaj, K., & Patel, S. (2015). Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Natural Hazards, 78(2), 1163–1195.

    Google Scholar 

  7. Anbazhagan, P., Smitha, C. V., Kumar, A., & Chandran, D. (2013). Estimation of design basis earthquake using region-specific Mmax, for the NPP site at Kalpakkam, Tamil Nadu, India. Nuclear Engineering and Design, 259, 41–64.

    Google Scholar 

  8. Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America, 96(6), 2181–2205.

    Google Scholar 

  9. Bilham, R., & Gaur, V. K. (2011). Historical and future seismicity near Jaitapur, India. Current Science, 101(10), 1275–1281.

    Google Scholar 

  10. Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America, 95(2), 377–389.

    Google Scholar 

  11. Bonilla, M. G., Mark, R. K., & Lienkaemper, J. J. (1984). Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bulletin of the Seismological Society of America, 74(6), 2379–2411.

    Google Scholar 

  12. Boominathan, A., Dodagoudar, G. R., Suganthi, A., & Maheswari, R. U. (2008). Seismic hazard assessment of Chennai city considering local site effects. Journal of Earth System Science, 117(2), 853–863.

    Google Scholar 

  13. Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America, 93(3), 1012–1033.

    Google Scholar 

  14. Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171.

    Google Scholar 

  15. Chandra, U. (1977). Earthquakes of peninsular India—A seismotectonic study. Bulletin of the Seismological Society of America, 67(5), 1387–1413.

    Google Scholar 

  16. Costa, G., Panza, G. F., Suhadolc, P., & Vaccari, F. (1993). Zoning of the Italian territory in terms of expected peak ground acceleration derived from complete synthetic seismograms. Journal of Applied Geophysics, 30(1–2), 149–160.

    Google Scholar 

  17. Desai, S. S., & Choudhury, D. (2014). Deterministic seismic hazard analysis for greater Mumbai, India. In Geo-congress 2014: Geotechnical special publication no. GSP 234 (pp. 389–398). ASCE.

  18. Desai, S. S., & Choudhury, D. (2015). Site-specific seismic ground response study for nuclear power plants and ports in Mumbai. Natural Hazards Review, 16(4), 04015002.

    Google Scholar 

  19. ESRI. (2011). ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (ESRI).

  20. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  21. GSI. (2000). Seismotectonic Atlas of India and its environs. Geological Survey of India, Special Publication 59, Kolkata.

  22. IS 1893-Part 1. (2016). Criteria for earthquake resistant design of structures. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  23. Iyengar, R. N., Sharma, D., & Siddiqui, J. M. (1999). Earthquake history of India in medieval times. Indian Journal of History of Science, 34(3), 181–238.

    Google Scholar 

  24. Jain, S. K. (2016). Earthquake safety in India: achievements, challenges and opportunities. Bulletin of Earthquake Engineering, 14(5), 1337–1436.

    Google Scholar 

  25. James, N., Sitharam, T. G., Padmanabhan, G., & Pillai, C. S. (2014). Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Natural Hazards, 71(1), 419–462.

    Google Scholar 

  26. Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the Seismological Society of America, 96(3), 879–897.

    Google Scholar 

  27. Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. Berlin: Springer Science & Business Media.

    Google Scholar 

  28. Klügel, J. U. (2005a). Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Engineering Geology, 78(3–4), 285–307.

    Google Scholar 

  29. Klügel, J. U. (2005b). Reply to the comment on JU Klügel’s: “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants,” Eng. Geol. Vol. 78, pp. 285–307, by Budnitz et al. Engineering Geology, 82, 79–85.

    Google Scholar 

  30. Klügel, J. U. (2005c). Reply to the comment on JU Klügel’s: “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants,” Eng. Geol. Vol. 78, pp. 285–307, by Musson et al. Engineering Geology, 82, 56–65.

    Google Scholar 

  31. Klügel, J. U. (2015). Lessons not yet learned from the Fukushima disaster. Acta Geodaetica et Geophysica, 50(1), 5–19.

    Google Scholar 

  32. Klügel, J. U., Mualchin, L., & Panza, G. F. (2006). A scenario-based procedure for seismic risk analysis. Engineering Geology, 88(1–2), 1–22.

    Google Scholar 

  33. Kolathayar, S., Sitharam, T. G., & Vipin, K. S. (2012). Deterministic seismic hazard macrozonation of India. Journal of Earth System Science, 121(5), 1351–1364.

    Google Scholar 

  34. Kramer, S. L. (1996). Geotechnical earthquake engineering. New Jersey: Prentice Hall.

    Google Scholar 

  35. Krinitzsky, E. L. (1995). Deterministic versus probabilistic seismic hazard analysis for critical structures. Engineering Geology, 40(1–2), 1–7.

    Google Scholar 

  36. Krinitzsky, E. L. (2002). How to obtain earthquake ground motions for engineering design. Engineering Geology, 65(1), 1–16.

    Google Scholar 

  37. Kumar, A., Anbazhagan, P., & Sitharam, T. G. (2013). Seismic hazard analysis of Lucknow considering local and active seismic gaps. Natural Hazards, 69(1), 327–350.

    Google Scholar 

  38. Liu, L., Gao, Y., Liu, B., & Li, S. (2019). Preliminary seismic hazard assessment for the proposed Bohai Strait subsea tunnel based on scenario earthquake studies. Journal of Applied Geophysics, 163, 13–21.

    Google Scholar 

  39. Mark, R. K. (1977). Application of linear statistical models of earthquake magnitude versus fault length in estimating maximum expectable earthquakes. Geology, 5(8), 464–466.

    Google Scholar 

  40. Molnar, P., Fitch, T. J., & Wu, F. T. (1973). Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. Earth and Planetary Science Letters, 19(2), 101–112.

    Google Scholar 

  41. Moratto, L., Orlecka-Sikora, B., Costa, G., Suhadolc, P., Papaioannou, C., & Papazachos, C. B. (2007). A deterministic seismic hazard analysis for shallow earthquakes in Greece. Tectonophysics, 442(1–4), 66–82.

    Google Scholar 

  42. Mualchin, L. (2011). History of modern earthquake hazard mapping and assessment in California using a deterministic or scenario approach. Pure and Applied Geophysics, 168(3–4), 383–407.

    Google Scholar 

  43. Muço, B., Vaccari, F., Panza, G., & Kuka, N. (2002). Seismic zonation in Albania using a deterministic approach. Tectonophysics, 344(3–4), 277–288.

    Google Scholar 

  44. Naik, N., & Choudhury, D. (2015). Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India. Natural Hazards, 75(1), 557–580.

    Google Scholar 

  45. Nath, S. K., & Thingbaijam, K. K. S. (2011). Peak ground motion predictions in India: an appraisal for rock sites. Journal of Seismology, 15(2), 295–315.

    Google Scholar 

  46. NDMA. (2010). Development of probabilistic seismic hazard map of India. Technical report by National Disaster Management Authority, Government of India.

  47. Nowroozi, A. A. (1985). Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bulletin of the Seismological Society of America, 75(5), 1327–1338.

    Google Scholar 

  48. Parvez, I. A., Magrin, A., Vaccari, F., Mir, R. R., Peresan, A., & Panza, G. F. (2017). Neo-deterministic seismic hazard scenarios for India—A preventive tool for disaster mitigation. Journal of Seismology, 21(6), 1559–1575.

    Google Scholar 

  49. Parvez, I. A., Panza, G. F., Gusev, A. A., & Vaccari, F. (2002). Strong-motion amplitudes in Himalayas and a pilot study for the deterministic first-order microzonation in a part of Delhi city. Current Science, 82(2), 158–166.

    Google Scholar 

  50. Parvez, I. A., Vaccari, F., & Panza, G. F. (2003). A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155(2), 489–508.

    Google Scholar 

  51. Prakash, R., & Shrivastava, J. P. (2012). A review of the seismicity and seismotectonics of Delhi and adjoining areas. Journal of the Geological Society of India, 79(6), 603–617.

    Google Scholar 

  52. Raghu Kanth, S. T. G., & Iyengar, R. N. (2007). Estimation of seismic spectral acceleration in peninsular India. Journal of Earth System Science, 116(3), 199–214.

    Google Scholar 

  53. Rao, V. D., & Choudhury, D. (2018). Prediction of earthquake occurrence for a new nuclear power plant in India using probabilistic models. Innovative Infrastructure Solutions, 3(1), 79.

    Google Scholar 

  54. Rao, V. D., & Choudhury, D. (2020a). Probabilistic modelling for earthquake forecasting in the northwestern part of Haryana state, India. Pure and Applied Geophysics, 177(7), 3073–3087.

    Google Scholar 

  55. Rao, V. D., & Choudhury, D. (2020b). Estimation of shear wave velocity and seismic site characterization for new nuclear power plant region, India. Natural Hazards Review, 21(4), 06020004.

    Google Scholar 

  56. Reiter, L. (1990). Earthquake hazard analysis—Issues and insights. New York: Columbia University Press.

    Google Scholar 

  57. Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model selection in seismic hazard analysis: An information-theoretic perspective. Bulletin of the Seismological Society of America, 99(6), 3234–3247.

    Google Scholar 

  58. Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236.

    Google Scholar 

  59. Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009). Ground-motion prediction equations based on data from the Himalayan and Zagros regions. Journal of Earthquake Engineering, 13(8), 1191–1210.

    Google Scholar 

  60. Shiuly, A., & Narayan, J. P. (2012). Deterministic seismic microzonation of Kolkata city. Natural Hazards, 60(2), 223–240.

    Google Scholar 

  61. Shreyasvi, C., Venkataramana, K., Chopra, S., & Rout, M. M. (2019). Probabilistic seismic hazard assessment of Mangalore and its adjoining regions, a part of Indian Peninsular: An intraplate region. Pure and Applied Geophysics, 176(6), 2263–2297.

    Google Scholar 

  62. Shukla, J., & Choudhury, D. (2012). Estimation of seismic ground motions using deterministic approach for major cities of Gujarat. Natural Hazards and Earth System Sciences, 12(6), 2019–2037.

    Google Scholar 

  63. Sitharam, T. G., & Anbazhagan, P. (2007). Seismic hazard analysis for the Bangalore region. Natural Hazards, 40(2), 261–278.

    Google Scholar 

  64. Slemmons, D. B., Bodin, P., & Zang, X. (1989). Determination of earthquake size from surface faulting events. In Proceedings of the international seminar on seismic zonation, Guangzhou, China (Vol. 13, pp. 157–169).

  65. Srivastava, H. N., Verma, M., & Bansal, B. K. (2010). Seismological constraints for the 1905 Kangra earthquake and associated hazard in northwest India. Current Science, 99(11), 1549–1559.

    Google Scholar 

  66. Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st international conference on microzonazion, Seattle, USA (Vol. 2, pp. 897–910).

  67. Toro, G. R., Abrahamson, N. A., & Schneider, J. F. (1997). Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismological Research Letters, 68(1), 41–57.

    Google Scholar 

  68. Vaccari, F., Tadili, B., El Qadi, A., Ramdani, M., Brahim, L. A., & Limouri, M. (2001). Deterministic seismic hazard assessment for North Morocco. Journal of Seismology and Earthquake Engineering, 3(1), 1–12.

    Google Scholar 

  69. Wang, J. P., & Taheri, H. (2014). Seismic hazard assessment of the Tehran region. Natural Hazards Review, 15(2), 121–127.

    Google Scholar 

  70. Wang, Z. (2011). Seismic hazard assessment: issues and alternatives. Pure and Applied Geophysics, 168(1–2), 11–25.

    Google Scholar 

  71. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974–1002.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for providing financial support with Grant Number 36(2)/15/04/2016-BRNS/36004-36029 (16BRNS012) to carry out the research work presented in this paper. The authors would like to express their gratitude to the Editor and anonymous reviewers for their valuable comments and thorough review of this manuscript, which improved the quality significantly.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deepankar Choudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, V.D., Choudhury, D. Deterministic Seismic Hazard Analysis for the Northwestern Part of Haryana State, India, Considering Various Seismicity Levels. Pure Appl. Geophys. 178, 449–464 (2021). https://doi.org/10.1007/s00024-021-02669-3

Download citation

Keywords

  • Seismicity
  • deterministic seismic hazard analysis
  • peak ground acceleration
  • response spectra
  • nuclear power plant