Relations Between Durability of Spring Frosts and North Advection on Omega Blocking Over Iran

Abstract

Blocking of atmospheric systems may lead to slowing down and even stopping the movement of western wind waves. This condition prolongs the warm days in catchment areas in front of the wave and induces continuation of cold and frost days in catchment areas behind the wave. The effect of cold and frost on the crops, especially in spring, is undeniable. Therefore, analyzing the blocking systems, named as omega, is important in Iran’s spring frost duration in southern middle latitudes. The daily minimum temperature data of 69 meteorological stations were collected from the Iranian Meteorological Organization from March 20, 1968, to June 21, 2014, in order to determine the effects of omega blocking systems on duration of the spring frost waves in Iran (equivalent to spring season in the Iranian calendar). By adjusting the tables of daily temperature distribution and plotting the frequency variation diagrams, 114 synoptic waves lasting 3–25 days were identified. Four durable waves (> 12 days) and ten low-durability waves (< 12 days) were identified by dividing the 114 waves into two groups (47 durable waves and 67 low-durability waves) and designing the atmospheric circulation pattern for the middle eastern region based on the air maps of 500 hPa. The results showed that blocking patterns usually occur in the areas of central Europe to the Black Sea basin and cause advective cold air from Scandinavian and central Russia basins to Iran, thereby resulting in durable frosts during spring.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alijani, B., & Barati, G. (1996). synoptic analysis of Iran’s spring frosts in 1987April. Geographic Researches, 40, 121–135.

    Google Scholar 

  2. Azizi, G., & Khalili, M. (2011). The role of blocking in occurrence of frin colds of Iran. Natural Geographic Researches, 77, 39–55.

    Google Scholar 

  3. Azizi, G., Moradi, M., & Rezaie, H. (2018). Climatology of effective cut of lows on Iran an it’s relation with ENSO and NAO. Geographical Research Journal, 33(1), 159–173.

    Google Scholar 

  4. Barati, G.R (1999). System relations emigration high pressure and Iran’s spring frosts, Journal of Geographical researches, 55, 132-150

  5. Barriopedro, D., García-Herrera, R., Lupo, A. R., & Hernández, E. (2006). A climatology of Northern Hemisphere blocking. Journal of Climate, 19(6), 1042–1063. https://doi.org/10.1175/JCLI3678.1.

    Article  Google Scholar 

  6. Bazgir, S., Mohamadi, H., Sharifi, L., & Soleimani, N. (2016). Analysis of frost hazard and frostbite of west Azarbayejan crops. Management of Environmental Hazards, 3(4), 365–378.

    Google Scholar 

  7. Bieli, M., Pfahl, S., & Wernli, H. (2015). A Lagrangian investigation of hot and cold temperature extremes in Europe. QJR Meteorol Soc, 141, 98–108. https://doi.org/10.1002/qj.2339.

    Article  Google Scholar 

  8. Carter, T.R., Parry, M.L. (1986). Climatic changes and yield variability. In: Hazell PBR (ed) Summary proceedings of a workshop on cereal yield variability. International Food Policy Research Institute, Washington, DC

  9. Croci-Maspoli, M., Schwierz, C., & Davies, H. C. (2007). A multifaceted climatology of atmospheric blocking and its recent linear trend. Journal of Climate, 20(4), 633–649. https://doi.org/10.1175/JCLI4029.1.

    Article  Google Scholar 

  10. Dargahian, F., Alijani, B., & Mohammadi, H. (2014). Recognition synoptic patterns of effective synoptic patterns on Iran’s temperature. Climatology Research, 23, 81–92.

    Google Scholar 

  11. Fatahi, A., & Salehi Pak, T. (2009). Analysis of synoptic patterns of winter glaciers in Iran. Journal of Geography and Development, 13, 127–136.

    Google Scholar 

  12. Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39, L06801. https://doi.org/10.1029/2012GL051000.

    Article  Google Scholar 

  13. Ghavidel Rahimi, Y., Farajzadeh, M., & Motalebizad, S. (2016). Statistical and synoptic analysis of cold waves in northwest of Iran’s region. Journal of Practical Researches of Geographical Sciences, 16(40), 29–46.

    Google Scholar 

  14. Gultepe, I., & Rao, G. V. (1993). Moisture and heat budgets of a cirrus cloud from aircraft measurements during FIRE. Q. J. Roy. Meteor. Soc, 119, 957–974. https://doi.org/10.1002/qj.49711951306.

    Article  Google Scholar 

  15. Gultepe, I., Kuhn, T., Pavolonis, M., Calvert, C., Gurka, J., Isaac, G. A., et al. (2014). Ice fog in Arctic during FRAM-IF project: aviation and nowcasting applications. Bulletin of Amer. Met. Soc, 95, 211–226. https://doi.org/10.1175/BAMS-D-11-00071.1.

    Article  Google Scholar 

  16. Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A. J., et al. (2015). A review on ice fog measurements and modeling. Atmospheric Research., 151, 2–19. https://doi.org/10.1016/j.atmosres.2014.04.014.

    Article  Google Scholar 

  17. Gultepe, I., Heymsfield, A. J., Gallagher, M., Ickes, L., & Baumgardner, D. (2017a). Ice Fog: the current state of knowledge and future challenges chapter 4, ice formation and evolution in clouds and precipitation: measurement and modelling challenges. AMS Meteorological Monographs, 58(4), 41–424. https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0002.1.

    Article  Google Scholar 

  18. Gultepe, I., A.J. Heymsfield, & Gallagher, M. (2020). Arctic Ice Fog: Its Microphysics and Prediction, The book of Physics and Chemistry of the Arctic Atmosphere, Edited by A. Kokhanovsky and Claudio Tomasi. Springer Nature, Switzerland AG. ISBN 978–3–030–33565–6. 361–414. https://doi.org/https://doi.org/10.1007/978-3-030-33566-3_6

  19. Huang, F., Xiaoyan, T., Lou, S. Y., & Cuihua, L. U. (2007). Evolution of dipole-type blocking life cycles: analytical diagnoses and observations. Journal of atmospheric Science, 64(1), 52–73. https://doi.org/10.1175/JAS3819.1.

    Article  Google Scholar 

  20. Jafar Baglou, N., Khorsiddost, A.M., Rezaie Banafshe, M., & Rostamzadeh,n H. (2018). Investigating the changes in the starting and the ending of effective colds and freezing in agriculture under climate change conditions in north—west of Iran. Jsaeh. 5(4):49-64

  21. Javadi Z, Fallah ghalehri GA., Entezari A (2014) The role of climate parameter on almond yield. Case study: Sabzevar. Journal of Climatology research, 5(17):125-141

  22. Lashkari, H. (2008). Synoptic analysis of pervasive cold wave in 2003 in Iran. Natural Geographical Researches, 66, 1–18.

    Google Scholar 

  23. Lashkari, H., & Keykhosravi, G. (2017). Trend of temperature changes and zoning of start and end of Tehran’s frost. Natural Environment Hazards Journal, 6(14), 63–86.

    Google Scholar 

  24. Lashkari, H., & Keykhosravi, G.h. . (2010). Synoptic analysis of cold wave of 15th January of 2006 in Iran. Planning and Space Preparation, 14(1), 151–177.

    Google Scholar 

  25. Lima, N. E., & Ambrizzi, T. (2002). The influence of atmospheric blocking on the Rossby wave propagation in Southern Hemisphere winter flows. Journal of the Meteorological Society of Japan, 80(2), 139–159.

    Article  Google Scholar 

  26. Liu, P., Zhu, Y., Zhang, Q., Gottschalck, J., et al. (2018). Climatology of tracked persistent maxima of 500-hPa geopotential height. Climate Dynamics, 51, 701–717. https://doi.org/10.1007/s00382-017-3950-0.

    Article  Google Scholar 

  27. Loi, D., Yao, Y., Dai, A., & Feldstein, S. B. (2015). The positive North Atlantic oscillation with downstream blocking and middle east snowstorms: the large-scale environment. Journal of Climate, 28, 6398–6418.

    Article  Google Scholar 

  28. Mahmoudi, P., Khosravi, M., Masoodian, S. A., & Alijani, B. (2016). Synoptic analysis of the most vast and constant Iran’s frost. Climatology Researches Journal, 7(26), 1–20.

    Google Scholar 

  29. Masoodian, A., & Darand, M. (2013). Synoptic analysis of pervasive and durable frost in Iran. Geographical and Environmental Planning, 24(50), 129–140.

    Google Scholar 

  30. Moradi, M. (2011). Introduction on dynamic meteorology 1. Tehran: publication of Seyed Bagher Hoseini, first edition, 1–181.

  31. Omidvar, K. (2016). Discuss and synoptic analyze- dynamic of small snow in Yazd Province. Journal of Geographic Information of Sepehr, 25(98), 25–42.

    Google Scholar 

  32. Park, T. W., Ho, C. H., Jeong, J. H., Heo, J. W., & Deng, W. (2015). A new dynamical index for classification of cold surge types over East Asia. Climate Dynamics, 45, 2469–2484. https://doi.org/10.1007/s00382-015-2483-7.

    Article  Google Scholar 

  33. Rahimi, M., Hajjam, S., Khalili, A., Kamali, G. A., & Stigter, C. J. (2007). Risk analysis of first and last frost occurrences in the Central Alborz Region Iran. International Journal of Climatology, 27(3), 349–356.

    Article  Google Scholar 

  34. Rahimi, M., Farajzadeh, M., & Kamali, G h. (2011). Modeling hazard of spring frost damage if fruit trees.case study: Apple crop Mashhad Makan plain. Iran’s Agricultural Researches, 9 (2), 273–284.

  35. Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988). A theory for strong, long-lived squall lines. Journal of Atmospheric Science, 45(3), 463–485.

    Article  Google Scholar 

  36. Rousta, I., Doostkamian, M., Haghighi, E., & Mirzakhani, B. (2016). Statistical-synoptic analysis of the atmosphere thickness pattern of Iran’s pervasive frosts. Climate, 4(3), 41. https://doi.org/10.3390/cli4030041.

    Article  Google Scholar 

  37. Ruddell, D., Hoffman, D., Ahmad, O., & Brazel, A. (2013). Historical threshold temperatures for Phoenix (urban) and Gila Bend (desert), central Arizona USA. Journal of Climate Research, 55(3), 201–215.

    Article  Google Scholar 

  38. Schoetter, R., Cattiaux, J., & Douville, H. (2015). Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Climate Dnamics, 45(5), 1601–1616. https://doi.org/10.1007/s00382-014-2434-8.

    Article  Google Scholar 

  39. Seyed Abdolahi, M., Alijani, B., Azizi, G., & Asadian, F. (2018). The Effect of Climate Change on Almond Phenology in Chaharmahal and Bakhtiari province. Journal of Natural Environmental Hazards, 8(22), 41–58. https://doi.org/10.22111/jneh.2018.24286.1383 .

    Article  Google Scholar 

  40. Sillmann, J., Croci-Maspoli, M., Kallache, M., & Katz, R. W. (2011). Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. Journal of Climate, 24, 5899–5913.

    Article  Google Scholar 

  41. Simmonds, I., & Rashid, H. A. (2001). An investigation of a dramatic cold outbreak over southeast Australia. Journal of Australian Meteorological Magazine, 50(4), 249.

    Google Scholar 

  42. Sitnov, S. A., Mokhov, I. I., & Lupo, A. R. (2017). Ozone, water vapor, and temperature anomalies associated with atmospheric blocking events over Eastern Europe in spring-summer 2010. Atmospheric Environment, 164, 180–194. https://doi.org/10.1016/j.atmosenv.2017.06.004.

    Article  Google Scholar 

  43. Snyder, R. L., & Melo-Abreu, J. P. (2005). Frost protection: fundamentals, practice and economics (pp. 1–248). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  44. Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M. M., & Santos, J. A. (2018). European temperature responses to blocking and ridge regional patterns. Climate Dynamics, 50, 457–477. https://doi.org/10.1007/s00382-017-3620-2.

    Article  Google Scholar 

  45. Tahririyeh, 2014. five hundred and sixty thousand billion rial’s frostbite damage to Chaharmahal and Bakhtiari gardens.Jame Jam, 2014–5–7. http://jamejamonline.ir/online. (in persian)

  46. Tomczyk, A. M., Szyga-Pluta, K., & Majkowska, A. (2015). Frost periods and frost-free periods in Poland and neighbouring countries. Journal of Open Geosciences, 7(1), 812–823. https://doi.org/10.1515/geo-2015-0061.

    Article  Google Scholar 

  47. Yao, Y., Luo, D., Dai, A., Simmonds, I. (2017). Increased Quasi Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme Cold Events in Response to Arctic Warming. Part I: Insights from Observational Analyses. Journal of Climate, 30 (10), 3549–3568. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0261.1

  48. Yue, Y., Zhou, Y., Wang, J. A., & Ye, X. (2016). Assessing wheat frost risk with the support of GIS: an approach coupling a growing season meteorological index and a hybrid fuzzy neural network model. Journal of Sustainability, 8(12), 1308. https://doi.org/10.3390/su8121308.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Jafari Hombari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jafari Hombari, F., Barati, G. & Moradi, M. Relations Between Durability of Spring Frosts and North Advection on Omega Blocking Over Iran. Pure Appl. Geophys. 178, 671–687 (2021). https://doi.org/10.1007/s00024-020-02652-4

Download citation

Keywords

  • Durable frosts
  • Spring season
  • North advection
  • Omega blocking
  • Iran