High-resolution Integrated Geophysical Investigation at the Lancaster Gold Mine, Krugersdorp, South Africa

Abstract

An integrated geophysical approach using seismics and geoelectrical techniques was employed to investigate the architecture of historic narrow-reef workings and a proposed open-pit mine at Lancaster Gold Mine, near Krugersdorp, South Africa. The mining activities in the area were mainly carried out within the Kimberley Reef Package in the upper Central Rand Group of the Witwatersrand Supergroup, which hosts several gold-bearing conglomerates (locally known as reefs). The reefs are generally thin (≤ 2 m thick) and dip between 28° and 32° south. The low-velocity weathered layer introduces significant static shifts in the reflection seismic data. Moreover, environmental noise from drilling and trucking, and the prominent bedrock-overburden contact that produces various wave conversions (P-S conversion), caused undesirable noise that contaminates the shot gathers as high-amplitude, source-generated and monochromatic noise. The noise was removed from the shot gathers using frequency and velocity filtering techniques. The final depth-migrated sections are characterised by high-resolution images of the subsurface from ~10 to ~150 m depth, which are constrained by the borehole information. The reflection seismic data delineate the interfaces between different rock layers and the stopes. The refraction and resistivity tomograms, on the other hand, provide more detailed images of the top 20–50 m of the subsurface and depict the approximate shallow geometry of fluid migration paths, mined-out areas, and bedrock-overburden boundaries. The integrated results indicate that the study area is characterised by a weathered surface layer with variable low P-wave velocity (400–1200 m/s) and resistivity (150–800 Ωm). The deeper layer reveals an increase in resistivity and velocity, and it’s characterized by discontinuities, weak zones, cavities or water-bearing zones due to the mining activities. The combined borehole and geophysical data provide valuable information regarding the physical characteristics of the subsurface and can be helpful for future risk management decisions, environmental and engineering studies in the area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

(modified from Dankert and Hein 2010)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Anhaeusser, C.R. (2012). The history of mining in the Barberton greenstone belt, South Africa, with an emphasis on gold (1868–2012). Economic Geology Research Institute, School of Geosciences, University of the Witwatersrand, Johannesburg Google Scholar. https://dewilde.co.za/Barberton/GoldenQuarry/THE%2520HISTORY%2520OF%2520MINING%2520%2520BARBERTON%2520-%2520Carl%2520Anhaesseur.pdf. Accessed on 23 Nov 2018

  2. Armstrong, R. A., Compston, W., Retief, E. A., Williams, I. T., & Welke, H. J. (1991). Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research,53(3–4), 243–266.

    Article  Google Scholar 

  3. Banerjee, B., & Gupta, S. K. (1975). Hidden layer problem in seismic refraction work. Geophysical Prospecting,23(4), 642–652.

    Article  Google Scholar 

  4. Breytenbach, I. J., & Bosch, P. J. A. (2011). Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations. Journal of the South African Institution of Civil Engineering,53(2), 7–13.

    Google Scholar 

  5. Brink, A.B.A. (1979). Engineering Geology of Southern Africa. Building Publications, Pretoria, Vol. 1.

  6. Brodic, B., Malehmir, A., Pugin, A., & Maries, G. (2018). Three-component seismic land streamer study of an esker architecture through S-and surface-wave seismic imaging of glacial sediments. Geophysics,83(6), B339–B353.

    Article  Google Scholar 

  7. Buttrick, D. B., Trollip, N. Y., Watermeyer, R. B., Pieterse, N. D., & Gerber, A. A. (2011). A performance-based approach to dolomite risk management. Environmental Earth Sciences,64(4), 1127–1138.

    Article  Google Scholar 

  8. Cary, P. (2006). Reflections on the deconvolution of land seismic data. CSEG RECORDER, Special Edition.

  9. Cooper, G. R. J. (2014). The automatic determination of the location and depth of contacts and dykes from aeromagnetic data. Pure and Applied Geophysics,171(9), 2417–2423.

    Article  Google Scholar 

  10. Council for Geoscience (CGS)/South African Institute of Engineering and Environmental Geologist (SAIEG). (2003). Guideline for engineering-geological characterisation and development of dolomitic land

  11. Corner, B., Durrheim, R. J., & Nicolaysen, L. O. (1990). Relationships between the Vredefort structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal craton as interpreted from regional gravity and aeromagnetic data. Tectonophysics,171(1–4), 49–61.

    Article  Google Scholar 

  12. Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting,52(5), 379–398.

    Article  Google Scholar 

  13. Dankert, B. T., & Hein, K. A. A. (2010). Evaluating the structural character and tectonic history of the Witwatersrand Basin. Precambrian Research,177, 1–22. https://doi.org/10.1016/j.precamres.2009.10.007.

    Article  Google Scholar 

  14. De Waal, S. A., Graham, I. T., & Armstrong, R. A. (2006). The Lindeques Drift and Heidelberg Intrusions and the Roodekraal Complex, Vredefort, South Africa: comagmatic plutonic and volcanic products of a 2055 Ma ferrobasaltic magma. South African Journal of Geology,109(3), 279–300.

    Article  Google Scholar 

  15. De Wit, M. J., Roering, C., Armstrong, R. A., Tredoux, M., de Ronde, C. E. J., Hart, R. J., et al. (1992). Formation of an Archean continent. Nature,357(6379), 553–564.

    Article  Google Scholar 

  16. Drennan, G. R., Boiron, M. C., Cathelineau, M., & Robb, L. J. (1999). Characteristics of post-depositional fluids in the Witwatersrand Basin. Mineralogy and Petrology,66(1–3), 83–109.

    Article  Google Scholar 

  17. Festa, V., Tripaldi, S., Siniscalchi, A., Acquafredda, P., Fiore, A., Mele, D., et al. (2016). Geoelectrical resistivity variations and lithological composition in coastal gypsum rocks: A case study from the Lesina Marina area (Apulia, southern Italy). Engineering Geology,202, 163–175.

    Article  Google Scholar 

  18. Frimmel, H. E., & Hallbauer, D. K. (1999). Gold mobilizing fluids in the Witwatersrand Basin: composition and possible sources. Mineralogy and Petrology,66(1–3), 55–81.

    Article  Google Scholar 

  19. Gélis, C., Revil, A., Cushing, M. E., Jougnot, D., Lemeille, F., Cabrera, J., et al. (2010). Potential of electrical resistivity tomography to detect fault zones in limestone and argillaceous formations in the experimental platform of Tournemire, France. Pure and Applied Geophysics,167(11), 1405–1418.

    Article  Google Scholar 

  20. Gibson, R. L., & Reimold, W. U. (2000). Deeply exhumed impact structures: A case study of the Vredefort structure, South Africa. Impacts and the Early Earth (pp. 249–277). Berlin, Heidelberg: Springer.

    Google Scholar 

  21. Gibson, R.L., & Reimold, W.U. (2001). The Vredefort impact structure, South Africa: the scientific evidence and a two-day excursion guide (v. 92). Council for Geoscience.

  22. Gómez-Ortiz, D., & Martín-Crespo, T. (2012). Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Engineering Geology,149, 1–12.

    Article  Google Scholar 

  23. Gray, S. H., Etgen, J., Dellinger, J., & Whitmore, D. (2001). Seismic migration problems and solutions. Geophysics,66(5), 1622–1640.

    Article  Google Scholar 

  24. Handley, J.R. (2004). Historic overview of the Witwatersrand goldfields: A review of the discovery, geology, geophysics, development, mining, production and future of the Witwatersrand goldfields as seen through a geological and financial association spanning 50 years. JRF Handley.

  25. Hayward, C. L., Reimold, W. U., Gibson, R. L., & Robb, L. J. (2005). Gold mineralization within the Witwatersrand Basin, South Africa: evidence for a modified placer origin, and the role of the Vredefort impact event. Geological Society, London, Special Publications,248(1), 31–58.

    Article  Google Scholar 

  26. Isiaka, A. I., Durrheim, R. J., & Manzi, M. S. (2019). High-resolution seismic reflection investigation of subsidence and sinkholes at an abandoned Coal Mine Site in South Africa. Pure and Applied Geophysics,176(4), 1531–1548.

    Article  Google Scholar 

  27. Ivanov, J., Miller, R. D., Xia, J., Steeples, D., & Park, C. B. (2005). The inverse problem of refraction travel times, Part I: types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics,162(3), 447–459.

    Article  Google Scholar 

  28. Ivanov, J., Miller, R. D., Xia, J., Steeples, D., & Park, C. B. (2006). Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem. Geophysics,71(6), R131–R138.

    Article  Google Scholar 

  29. Keller, G.V., & Frischknecht, F.C. (1966). Electrical methods in geophysical prospecting. Pergamon Press, Inc.

  30. Kleywegt, R.J. (2015). Geophysics in dolomitic terrains. In the History of Geophysics in Southern Africa. Johan H de Beer ed, Sun Press, pp. 190 - 203.

  31. Kirk, J., Ruiz, J., Chesley, J., Walshe, J., & England, G. (2002). A major Archean, gold-and crust-forming event in the Kaapvaal Craton, South Africa. Science,297(5588), 1856–1858.

    Article  Google Scholar 

  32. Leucci, G. (2004). Evaluation of 2D resistivity and seismic refraction methods in a complex karstic area. Geo Acta,3, 43–53.

    Google Scholar 

  33. Leucci, G., & De Giorgi, L. (2005). Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Natural Hazards and Earth System Science,5(1), 17–22.

    Article  Google Scholar 

  34. Loke, M. H., & Barker, R. D. (1996). Practical techniques for 3D resistivity surveys and data inversion 1. Geophysical Prospecting,44(3), 499–523.

    Article  Google Scholar 

  35. Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics,95, 135–156.

    Article  Google Scholar 

  36. Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D.J., Milkereit, B., & Campbell, G. (2012a). Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics, 77(5), pp. WC173-WC190.

  37. Malehmir, A., Juhlin, C., Wijns, C., Urosevic, M., Valasti, P., & Koivisto, E. (2012b). 3D reflection seismic imaging for open-pit mine planning and deep exploration in the Kevitsa Ni-Cu-PGE deposit, northern Finland. Geophysics77(5), pp. WC95-WC108.

  38. Malehmir, A., Andersson, M., Mehta, S., Brodic, B., Munier, R., Place, J., et al. (2016). Post-glacial reactivation of the Bollnas fault, central Sweden: a multidisciplinary geophysical investigation. Solid Earth,7(2), 509–527.

    Article  Google Scholar 

  39. Manzi, M.S.D., Gibson, M.A.S., Hein, K.A.A., King, N., & Durrheim, R.J. (2012a) Application of 3-D seismic techniques in evaluation of ore resources in the West Wits Line goldfield and portions of the West Rand goldfield, South Africa. Geophysics, 77(5), pp. WC163-WC171.

  40. Manzi, M.S., Durrheim, R.J., Hein, K.A., & King, N. (2012b). 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics77(5), pp. WC133-WC147.

  41. Manzi, M. S., Hein, K. A., Durrheim, R. J., & King, N. (2014). The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets. International Journal of Rock Mechanics and Mining Sciences,66, 97–113.

    Article  Google Scholar 

  42. Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J. A., et al. (2014). Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics,107, 149–162.

    Article  Google Scholar 

  43. Miller, R. D., Steeples, D. W., & Brannan, M. (1989). Mapping a bedrock surface under dry alluvium with shallow seismic reflections. Geophysics,54(12), 1528–1534.

    Article  Google Scholar 

  44. Miller, R.D., & Steeples, D.W. (1991). Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection. Geoexploration28(2), pp. 109–119.

  45. Miller, R. D., & Xia, J. (1998). Large near-surface velocity gradients on shallow seismic reflection data. Geophysics,63(4), 1348–1356.

    Article  Google Scholar 

  46. Narayan, J. P. (2012). Effects of P-wave and S-wave impedance contrast on the characteristics of basin transduced Rayleigh waves. Pure and Applied Geophysics,169(4), 693–709.

    Article  Google Scholar 

  47. National Water Act (NWA), Act No 36 of 1998 Republic of South Africa.

  48. Norman, N., & Whitfield, G. (2006). Geological Journeys (pp. 38–49, 60–61). Cape Town: Struik Publishers.

  49. Onyebueke, E. O. (2014). Application of multichannel analysis of surface wave and 2D resistivity imaging methods in delineating depth to competent soil layers in Coker-Orile, Lagos state Nigeria. Unpublished Masters Dissertation, University of Lagos, Nigeria.

  50. Onyebueke, E. O., Manzi, M. S. D., & Durrheim, R. J. (2018). High-resolution shallow reflection seismic integrated with other geophysical methods for hydrogeological prospecting in the Nylsvley Nature Reserve, South Africa. Journal of Geophysics and Engineering,15(6), 2658–2669.

    Article  Google Scholar 

  51. Redhaounia, B., Ilondo, B. O., Gabtni, H., Sami, K., & Bédir, M. (2016). Electrical Resistivity Tomography (ERT) applied to Karst carbonate aquifers: case study from Amdoun, northwestern Tunisia. Pure and Applied Geophysics,173(4), 1289–1303.

    Article  Google Scholar 

  52. Reimold, W. U., & Gibson, R. L. (1996). Geology and evolution of the Vredefort impact structure, South Africa. Journal of African Earth Sciences,23(2), 125–162.

    Article  Google Scholar 

  53. Robb, L. J., & Meyer, F. M. (1995). The Witwatersrand Basin, South Africa: geological framework and mineralization processes. Ore Geology Reviews,10(2), 67–94.

    Article  Google Scholar 

  54. Robb, L. J., Davis, D. W., & Kamo, S. L. (1991). Chronological framework for the Witwatersrand Basin and environs: towards a time-constrained depositional model. South African Journal of Geology,94(1), 86–95.

    Google Scholar 

  55. Sandmeier, K. J. (1998). ReflexW Program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data. Karlsruhe: Sandmeier Software.

    Google Scholar 

  56. Sheriff, R.E., & Geldart, L.P. (1995). Exploration Seismology, 2nd edn. Cambridge : Cambridge University Press.

  57. Spitzer, R., Nitsche, F. O., Green, A. G., & Horstmeyer, H. (2003). Efficient acquisition, processing, and interpretation strategy for shallow 3D seismic surveying: A case study. Geophysics,68(6), 1792–1806.

    Article  Google Scholar 

  58. Steeples, D.W., & Miller, R.D. (1988). Seismic reflection methods applied to engineering, environmental, and ground-water problems. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1988. Society of Exploration Geophysicists, pp. 409–461.

  59. Steeples, D. W., Green, A. G., McEvilly, T. V., Miller, R. D., Doll, W. E., & Rector, J. W. (1997). A workshop examination of shallow seismic reflection surveying. The Leading Edge,16(11), 1641–1647.

    Article  Google Scholar 

  60. Therriault, A. M., Grieve, R. A. F., & Reimold, W. U. (1997). Original size of the Vredefort structure: Implications for the geological evolution of the Witwatersrand Basin. Meteoritics and Planetary Science,32(1), 71–77.

    Article  Google Scholar 

  61. Tinker, J., de Wit, M., & Grotzinger, J. (2002). Seismic stratigraphic constraints on Neoarchean-Paleoproterozoic evolution of the western margin of the Kaapvaal Craton, South Africa. South African Journal of Geology,105(2), 107–134.

    Article  Google Scholar 

  62. Whitaker, F. F., & Xiao, Y. (2010). Reactive transport modelling of early burial dolomitization of carbonate platforms by geothermal convection. AAPG Bulletin,94(6), 889–917.

    Article  Google Scholar 

  63. Widess, M. B. (1973). How thin is a thin bed? Geophysics,38(6), 1176–1180.

    Article  Google Scholar 

  64. Wolmarans, J.F. (1996). Sinkholes and subsidences on the Far West Rand. Seminar on the Engineering Geology of Dolomite areas, University of Pretoria, Pretoria, 18 January 1996.

  65. Yilmaz, O. (1987). Seismic Data Processing (Investigations in Geophysics): Society of Exploration Geophysicists.

  66. Yılmaz, O. (2001). Seismic data analysis: Processing, inversion, and interpretation of seismic data. Tulsa: Society of Exploration Geophysicists.

    Google Scholar 

  67. Youssef, A. M., El-Kaliouby, H. M., & Zabramawi, Y. A. (2012). Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. Journal of Applied Geophysics,87, 28–39.

    Article  Google Scholar 

  68. Zegers, T. E., De Wit, M. J., Dann, J., & White, S. H. (1998). Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova,10(5), 250–259.

    Article  Google Scholar 

Download references

Acknowledgements

Appreciation goes to Dr. F. Andriampenomanana, S. Gomo, Z. Nxantsiya, A. Netsianda, P. Mlokothi, M. Hobo and M. Ntsuku and T. Nwachukwu for their assistance in the field. Thanks to M. Westgate for his MATLAB code used to generate synthetic seismogram. We would like to thank E. Stettler and Lancaster Gold Mine, Krugersdorp, South Africa for granting us permission to conduct our survey in the mine. We also want to thank the reviewers and the associate editor for improving the quality of the manuscript. All the equipment used in this study was provided by the Seismic Research Centre, School of Geoscience, University of the Witwatersrand and Council for Geoscience (CGS), South Africa. R.J Durrheim acknowledges the support of the National Research Foundation of South Africa (Grant Number: 46979).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. O. Onyebueke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onyebueke, E.O., Durrheim, R.J., Manzi, M.S.D. et al. High-resolution Integrated Geophysical Investigation at the Lancaster Gold Mine, Krugersdorp, South Africa. Pure Appl. Geophys. (2020). https://doi.org/10.1007/s00024-020-02529-6

Download citation

Keywords

  • Reflection seismic
  • Seismic refraction
  • Resistivity tomography
  • Kimberley Reef Package
  • Central Rand Group
  • Integrated geophysical methods