Correlation of a 410-km Discontinuity Low Velocity Layer with Velocity Tomograms Beneath the Colorado Plateau Using the RISTRA Array

Abstract

The transition zone water filter model (Nature 425(6953), 39–44; 2003) predicts that a hydrous partial melt layer is only actively produced in a region of upwelling mantle. We test the transition zone water filter model via stacking of P-to-S converted receiver functions by using the IRIS-PASSCAL RISTRA (Colorado Plateau/Rio Grande Rift Seismic Transect Experiment) array. Assuming the high velocity regions found at the northwest and southeast ends of the array at 350–440 km by teleseismic velocity tomograms e.g. Schmandt and Humphreys (Earth and Planetary Science Letters 297(3–4): 435–445; 2010) are cold and sinking vertically, the 410-km low velocity layer should be absent in these regions. The receiver function stacking profiles find the mean depths of the two primary discontinuities at 417 ± 7.1 km for the 410-km discontinuity and 667 ± 8.2 km for the 660-km discontinuity. The average arrival amplitudes with respect to Z component are 3.0% for the 410-km discontinuity, 2.8% for the 660-km discontinuity, and − 1.8% for the 410-km low velocity layer. The stacked Pds image show the 410-km low cabsent at ~ 350 to 390 km in the high velocity regions, but present in low velocity region. A correlation plot of sum of the 410-km low velocity arrival amplitudes and P-wave perturbation finds a positive linear relationship. Therefore, our findings provide seismic evidence for the transition zone water filter model at a small scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaogi, M., Takayama, H., Kojitani, H., Kawaji, H., & Atake, T. (2007). Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α–β–γ and post-spinel phase relations at high pressure. Phys Chem Miner,34(3), 169–183. https://doi.org/10.1007/s00269-006-0137-3.

    Article  Google Scholar 

  2. Becker TW (2012) On recent seismic tomography for the western United States. Geochemistry, Geophysics, Geosystems, 13(1). https://doi.org/10.1029/2011gc003977.

  3. Bercovici, D., & Karato, S. (2003). Whole-mantle convection and the transition-zone water filter. Nature,425(6953), 39–44.

    Article  Google Scholar 

  4. Burdick, S., Li, C., Martynov, V., Cox, T., Eakins, J., Mulder, T., et al. (2008). Upper mantle heterogeneity beneath north america from travel time tomography with global and US array transportable array data. Seismological Research Letters,79(3), 384–392.

    Article  Google Scholar 

  5. Cao, A., & Levander, A. (2010). High-resolution transition zone structures of the Gorda slab beneath the western United States: implication for deep water subduction. Journal of Geophysical Research,115, B07301.

    Google Scholar 

  6. Courtier, A. M., & Revenaugh, J. (2007). Deep upper-mantle melting beneath the Tasman and Coral seas detected with multiple ScS reverberations. Earth and Planetary Science Letters,259, 66–76.

    Article  Google Scholar 

  7. Dueker, K. G., & Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P and S waves across the Yellowstone hotspot track. Journal of Geophysical Research,102(B4), 8313–8327.

    Article  Google Scholar 

  8. Efron, B., & Tibshitani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science,1, 54–77.

    Article  Google Scholar 

  9. Fee, D., & Dueker, K. (2004). Mantle transition zone topography and structure beneath the Yellowstone hotspot. Geophysical Research Letters,31, L18603. https://doi.org/10.1029/2004GL020636.

    Article  Google Scholar 

  10. Fei, Y., van Orman, J., Li, J., van Westrenen, W., Sanloup, C., Minarik, W., et al. (2004). Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research-Solid Earth,109, B02305.

    Article  Google Scholar 

  11. Gao, W., Grand, S. P., Baldridge, W. S., Wilson, D., West, M., Ni, J. F., et al. (2004). Upper mantle convection beneath the central Rio Grande rift imaged by P and S wave tomography. Journal of Geophysical Research,109, B03305.

    Google Scholar 

  12. Grand, S. P., & Helmberger, D. V. (1984). Upper mantle shear structure of North America. Geophysical Journal International, 76(2), 399–438. https://doi.org/10.1111/j.1365-246X.1984.tb05053.x.

    Article  Google Scholar 

  13. Gu, Y. J., & Dziewonski, A. M. (2002). Global variability of transition zone thickness. Journal of Geophysical Research,107(B7), 2135. https://doi.org/10.1029/2001JB000489.

    Article  Google Scholar 

  14. Helffrich, G. (2006). Extend-time multitaper frequency domain cross-correlation receiver-function estimation. Bulletin of the Seismological Society of America,96(1), 344–347.

    Article  Google Scholar 

  15. Hier-Majumder, S., & Tauzin, B. (2017). Pervasive upper mantle melting beneath the western US. Earth and Planetary Science Letters,463(2017), 25–35.

    Article  Google Scholar 

  16. Inoue, T., Wada, T., Sasaki, R., & Yurimoto, H. (2010). Water partitioning in the Earth’s mantle. Phyics of the Earth and Planetary Interiors,183, 245–251.

    Article  Google Scholar 

  17. Jasbinsek, J. J., Dueker, K. G., & Hansen, S. M. (2010). Characterizing the 410 km discontinuity low-velocity layer beneath the LA RISTRA array in the North American Southwest. Geochemistry Geophysics Geosystems, 11(3), Q03008. https://doi.org/10.1029/2009GC002836.

    Article  Google Scholar 

  18. Karato, S. (2011). Water distribution across the mantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters,201, 413–423. https://doi.org/10.1016/j.epsl.2010.11.038.

    Article  Google Scholar 

  19. Karato, S., Bercovici, D., Leahy, G., Richard, G., & Jing, Z. (2006). The transition-zone water filter model for global material circulation: where do we stand? Earth’s Deep Water Cycle: Geophysical Monograph Series,168, 289–313.

    Google Scholar 

  20. Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., et al. (2004). Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109, B02209. https://doi.org/10.1029/2003JB002438.

    Article  Google Scholar 

  21. Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International,105(2), 429–465.

    Article  Google Scholar 

  22. Lawrence, J., & Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. Journal of Geophysical Research,111, B06307. https://doi.org/10.1029/2005JB003973.

    Article  Google Scholar 

  23. Leahy, G. M., & Bercovici, D. (2007). On the dynamics of a hydrous melt layer above the transition zone. Journal of Geophysical Research, 112, B07401. https://doi.org/10.1029/2006JB004631.

    Article  Google Scholar 

  24. Litasov, K. D., Ohtani, E., Sano, A., Suzuki, A. & Funakoshi, K. (2005). Wet subduction versus cold subduction, Journal of Geophysical Research, 32, https://doi.org/10.1029/2005GL022921

  25. Liu, Z., Park, J., & Karato, S. (2016). Seismological detection of low velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophysical Research Letters,43, 2480–2487. https://doi.org/10.1002/2015GL067097.

    Article  Google Scholar 

  26. Liu, Z., Park, J., & Karato, S. (2018). Seismic evidence for water transport out of the mantle transition zone beneath the European Alps. Earth and Planetary Science Letters,482, 93–104. https://doi.org/10.1016/j.epsl.2017.10.054.

    Article  Google Scholar 

  27. Liu, L., & Stegman, D. (2011). Segmentation of the Farallon slab. Earth and Planetary Science Letters,311(1–2), 1–10.

    Article  Google Scholar 

  28. Mao, Z., Jacobsen, S. D., Jiang, F., Smyth, J. R., Holl, C. M., & Duffy, T. S. (2008). Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth’s transition zone. Geophysical Research Letters,35, L21305. https://doi.org/10.1029/2008GL035618.

    Article  Google Scholar 

  29. Park, J., & Levin, V. (2000). Receiver functions from multiple-taper spectral correlation estimates. Bulletin of the Seismological Society of America,90(6), 1507–1520.

    Article  Google Scholar 

  30. Park, J., & Levin, V. (2016). Statistics and frequency-domain moveout for multiple-taper receiver functions. Geophysical Journal International,207(1), 512–527. https://doi.org/10.1093/gji/ggw291.

    Article  Google Scholar 

  31. Revenaugh, J., & Sipkin, S. A. (1994). Seismic evidence for silicate melt atop the 410 km mantle discontinuity. Nature,369(6480), 474–476.

    Article  Google Scholar 

  32. Ringwood, A. E. (1994). Role of the transition zone and 660 km discontinuity in mantle dynamics. Physics of the Earth and Planetary Interiors,86(1–3), 5–24.

    Article  Google Scholar 

  33. Schaeffer, A. J., & Bostock, M. G. (2010). A low-velocity zone atop the transition zone in northwestern Canada. Journal of Geophysical Research,115, B06302. https://doi.org/10.1029/2009JB006856.

    Article  Google Scholar 

  34. Schmandt, B., & Humphreys, E. (2010). Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth and Planetary Science Letters,297(3–4), 435–445.

    Article  Google Scholar 

  35. Sigloch, K. (2011). Mantle provinces under North America from multifrequency P wave tomography. Geochemistry Geophysics Geosystems, 12(2), Q02W08. https://doi.org/10.1029/2010GC003421.

    Article  Google Scholar 

  36. Sine, C. R., Wilson, D., Gao, W., Grand, S. P., Aster, R., Ni, J., et al. (2008). Mantle structure beneath the western edge of the Colorado Plateau. Geophysical Research Letters,35, L10303. https://doi.org/10.1029/2008GL033391.

    Article  Google Scholar 

  37. Smyth, J. R., & Frost, D. J. (2002). The effect of water on the 410-km discontinuity: an experimental study. Geophysical Research Letters,29(10), 1485. https://doi.org/10.1029/2001GL014418.

    Article  Google Scholar 

  38. Song, T., Helmberger, D., & Grand, S. (2004). Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature,427(6974), 530–533.

    Article  Google Scholar 

  39. Tauzin, B., Debayle, E., & Wittlinger, G. (2008). The mantle transition zone as seen by global Pds phases: no clear evidence for a thin transition zone beneath hotspots. Journal of Geophysical Research,113, B08309. https://doi.org/10.1029/2007JB005364.

    Article  Google Scholar 

  40. Tauzin, B., Debayle, E., & Wittlinger, G. (2010). Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nature,3, 718–721.

    Google Scholar 

  41. Vinnik, L., & Farra, V. (2006). S velocity reversal in the mantle transition zone. Geophysical Research Letters,33, L18316.

    Article  Google Scholar 

  42. Vinnik, L., & Farra, V. (2007). Low S velocity atop the 410-km discontinuity and mantle plumes. Earth and Planetary Science Letters,262(3–4), 398–412.

    Article  Google Scholar 

  43. Vinnik, L., Kumar, M., Kind, R., & Farra, V. (2003). Super-deep low-velocity layer beneath the Arabian plate. Geophysical Research Letters,30(7), 1415.

    Article  Google Scholar 

  44. Vinnik, L., Ren, Y., Stutzmann, E., Farra, V., & Kiselev, S. (2010). Observations of S410p and S350p phases at seismography stations in California. Journal of Geophysical Research,115, B05303.

    Article  Google Scholar 

  45. Youngs, B., & Bercovici, D. (2009). Stability of a compressible hydrous melt layer above the transition zone. Earth and Planetary Science Letters,278, 78–86.

    Article  Google Scholar 

  46. Zhang, Z., Dueker, K., & Huang, H. H. (2018). Ps mantle transition zone imaging beneath the Colorado Rocky mountains: evidence for an upwelling hydrous mantle. Earth and Planetary Science Letters,492, 197–205. https://doi.org/10.1016/j.epsl.2018.03.044.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support from National Science Foundation Continental Dynamics Program under award 0607693. The RISTRA 1.0/1.5 seismic data are requested from Incorporated Research Institution for Seismology Data Management Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Dueker, K.G. Correlation of a 410-km Discontinuity Low Velocity Layer with Velocity Tomograms Beneath the Colorado Plateau Using the RISTRA Array. Pure Appl. Geophys. 177, 2653–2661 (2020). https://doi.org/10.1007/s00024-019-02405-y

Download citation

Keywords

  • Transition zone water filter
  • receiver function
  • 410-low velocity layer