Enhancement and Sharpening the Migration Images of the Gravity Field and Its Gradients

Abstract

Potential field migration represents a rapid technique for imaging the subsurface based on gravity data. However, migration transformation usually produces a smooth and unfocused image of the targets due to the diffusive nature of the potential fields. In this paper, we introduce a method of the migration image enhancement and sharpening based on the application of the hybrid focusing stabilizer, which combines the edge-preserving smoothing filter with the minimum support functional. The method is based on the model resolution matrix of the migration operator. We also improve the migration image with a novel target-oriented migration method. The developed method of migration image enhancement and sharpening is illustrated by synthetic model studies and case studies. The case study involves imaging the full tensor gravity gradient data collected in the Nordkapp Basin of the Barents Sea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. AlBinHassan, N. M., Luo, Y., & Al-Faraj, M. N. (2006). 3D edge-preserving smoothing and applications. Geophysics,71(4), P5–P11. https://doi.org/10.1190/1.2213050.

    Article  Google Scholar 

  2. Beiki, M. (2010). Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics,75(6), I59–I74. https://doi.org/10.1190/1.3493639.

    Article  Google Scholar 

  3. Beiki, M., & Pedersen, L. B. (2010). Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics,75(6), I37–I49. https://doi.org/10.1190/1.3484098.

    Article  Google Scholar 

  4. Berkhout, A. J. (1980). Seismic migration: Imaging of acoustic energy by wave field extrapolation. New York: Elsevier.

    Google Scholar 

  5. Boulanger, O., & Chouteau, M. (2001). Constraints in 3D gravity inversion. Geophysical Prospecting,49, 265–280.

    Article  Google Scholar 

  6. Bugge, T., Elvebakk, G., Fanavoll, S., Mangerud, G., Smelror, M., Weiss, H. M., et al. (2002). Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Marine and Petroleum Geology,19(1), 13–37. https://doi.org/10.1016/S0264-8172(01)00051-4.

    Article  Google Scholar 

  7. Claerbout, J. F. (1985). Imaging the earth’s interior. Oxford: Blackwell.

    Google Scholar 

  8. Fedi, M. (2007). DEXP: A fast method to determine the depth and the structural index of potential fields sources (Vol. 72).

  9. Gernigon, L., Brönner, M., Fichler, C., Løvås, L., Marello, L., & Olesen, O. (2011). Magnetic expression of salt diapir-related structures in the Nordkapp Basin, western Barents Sea. Geology,39(2), 135–138. https://doi.org/10.1130/G31431.1.

    Article  Google Scholar 

  10. Hornby, P., Boschetti, F., & Horowitz, F. G. (1999). Analysis of potential field data in the wavelet domain. Geophysical Journal International,137(1), 175–196. https://doi.org/10.1046/j.1365-246x.1999.00788.x.

    Article  Google Scholar 

  11. Hu, J., Schuster, G. T., & Valasek, P. A. (2001). Poststack migration deconvolution. Geophysics,66(3), 939–952. https://doi.org/10.1190/1.1444984.

    Article  Google Scholar 

  12. Koyi, H., Talbot, C. J., & Torudbakken, B. O. (1995). Analogue models of salt diapirs and seismic interpretation in the Nordkapp Basin, Norway. Petroleum Geoscience,1(2), 185–192. https://doi.org/10.1144/petgeo.1.2.185.

    Article  Google Scholar 

  13. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1993). Salt diapirs of the southwest Nordkapp Basin: Analogue modelling. Tectonophysics,228(3), 167–187. https://doi.org/10.1016/0040-1951(93)90339-L.

    Article  Google Scholar 

  14. Li, Y. (2001). 3-D inversion of gravity gradiometer data. In Paper presented at the SEG Technical Program Expanded Abstracts 2001.

  15. Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics,61(2), 394–408.

    Article  Google Scholar 

  16. Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics,63(1), 109–119.

    Article  Google Scholar 

  17. Luo, Y., Marhoon, M., Dossary, S. A., & Alfaraj, M. (2002). Edge-preserving smoothing and applications. The Leading Edge,21(2), 136–158. https://doi.org/10.1190/1.1452603.

    Article  Google Scholar 

  18. Malin, K. H. (2017). Improved constraint on salt geometry in the southern Nordkapp Basin. Master’s thesis, Norwegian University of Science and Technology, Norwegian University of Science and Technology.

  19. Martinez, C., Li, Y., Krahenbuhl, R., & Braga, M. A. (2012). 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilátero Ferrífero, Brazil. Geophysics,78(1), B1–B11.

    Article  Google Scholar 

  20. Paoletti, V., Fedi, M., Italiano, F., Florio, G., & Ialongo, S. (2016). Inversion of gravity gradient tensor data: Does it provide better resolution? Geophysical Journal International,205(1), 192–202. https://doi.org/10.1093/gji/ggw003.

    Article  Google Scholar 

  21. Pilkington, M. (2012). Analysis of gravity gradiometer inverse problems using optimal design measures. Geophysics,77(2), G25–G31. https://doi.org/10.1190/geo2011-0317.1.

    Article  Google Scholar 

  22. Pilkington, M. (2014). Evaluating the utility of gravity gradient tensor components. Geophysics,79(1), G1–G14. https://doi.org/10.1190/geo2013-0130.1.

    Article  Google Scholar 

  23. Portniaguine, O., & Zhdanov, M. S. (1999). Focusing geophysical inversion images. Geophysics,64(3), 874–887. https://doi.org/10.1190/1.1444596.

    Article  Google Scholar 

  24. Portniaguine, O., & Zhdanov, M. S. (2002). 3-D magnetic inversion with data compression and image focusing. Geophysics,67(5), 1532–1541. https://doi.org/10.1190/1.1512749.

    Article  Google Scholar 

  25. Schneider, W. A. (1978). Integral formulation for migration in two and three dimensions. Geophysics,43(1), 49–76. https://doi.org/10.1190/1.1440828.

    Article  Google Scholar 

  26. Schuster, G. (2017). Seismic inversion (investigations in geophysics). Tulsa: Society of Exploration Geophysicists.

    Google Scholar 

  27. Sun, J., & Li, Y. (2016). Joint inversion of multiple geophysical data using guided fuzzy c-means clustering. Geophysics,81(3), ID37–ID57.

    Article  Google Scholar 

  28. Thompson, D. T. (1982). EULDPH: A new technique for making computer assisted depth estimates from magnetic data. Geophysics,47, 31–37.

    Article  Google Scholar 

  29. Vasco, D. W. (1989). Resolution and variance operators of gravity and gravity gradiometry. Geophysics,54(7), 889–899. https://doi.org/10.1190/1.1442717.

    Article  Google Scholar 

  30. Wan, L., Han, M., & Zhdanov, M. S. (2016). Joint iterative migration of surface and borehole gravity gradiometry data. In Paper presented at the SEG technical program expanded abstracts 2016.

  31. Wan, L., & Zhdanov, M. S. Iterative migration of gravity and gravity gradiometry data. In 2013 SEG Annual Meeting, 2013: Society of Exploration Geophysicists.

  32. Yu, J., Hu, J., Schuster, G. T., & Estill, R. (2006). Prestack migration deconvolution. Geophysics,71(2), S53–S62. https://doi.org/10.1190/1.2187783.

    Article  Google Scholar 

  33. Yu, J., & Schuster, G. T. (2003). Migration deconvolution vs. least squares migration. In Paper presented at the SEG Technical Program Expanded Abstracts 2003.

  34. Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problem (Vol. 36). Oxford: Elsevier.

    Google Scholar 

  35. Zhdanov, M. S. (2009). Geophysical electromagnetic theory and methods (1st ed.). Oxford: Elsevier.

    Google Scholar 

  36. Zhdanov, M. S. (2015). Inverse theory and applications in geophysics (2nd ed.). Oxford: Elsevier.

    Google Scholar 

  37. Zhdanov, M. S., Cai, H., & Wilson, G. A. (2012a). Migration transformation of two-dimensional magnetic vector and tensor fields. Geophysical Journal International,189(3), 1361–1368.

    Article  Google Scholar 

  38. Zhdanov, M. S., Ellis, R., & Mukherjee, S. (2004). Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics,69(4), 925–937. https://doi.org/10.1190/1.1778236.

    Article  Google Scholar 

  39. Zhdanov, M. S., & Lin, W. (2017). Adaptive multinary inversion of gravity and gravity gradiometry data. Geophysics,82(6), G101–G114. https://doi.org/10.1190/geo2016-0451.1.

    Article  Google Scholar 

  40. Zhdanov, M. S., Liu, X., & Wilson, G. (2010a). Potential field migration for rapid 3D imaging of entire gravity gradiometry surveys. First Break,28(11), 47–51.

    Google Scholar 

  41. Zhdanov, M. S., Liu, X., & Wilson, G. A. (2010b). Rapid imaging of gravity gradiometry data using 2D potential field migration. In SEG Technical Program Expanded Abstracts 2010 (pp. 1132–1136). Society of Exploration Geophysicists.

  42. Zhdanov, M. S., Liu, X., Wilson, G. A., & Wan, L. (2011). Potential field migration for rapid imaging of gravity gradiometry data. Geophysical Prospecting,59(6), 1052–1071.

    Article  Google Scholar 

  43. Zhdanov, M. S., Liu, X., Wilson, G. A., & Wan, L. (2012b). 3D migration for rapid imaging of total-magnetic-intensity data. Geophysics,77(2), J1–J5.

    Article  Google Scholar 

  44. Zhdanov, M. S., & Traynin, P. Inversion versus migration in two-dimensional geoelectrical problems. In 1996 SEG annual meeting, 1996. Society of Exploration Geophysicists.

  45. Zhdanov, M. S., & Portniaguine, O. (1997). Time-domain electromagnetic migration in the solution of inverse problems. Geophysical Journal International,131(2), 293–309.

    Article  Google Scholar 

  46. Zhdanov, M. S., Traynin, P., & Booker, J. R. (1996). Underground imaging by frequency-domain electromagnetic migration. Geophysics,61(3), 666–682. https://doi.org/10.1190/1.1443995.

    Article  Google Scholar 

  47. Zhdanov, M. S., Traynin, P. N., & Portniaguine, O. (1995). Resistivity imaging by time domain electromagnetic migration (TDEMM). Exploration Geophysics,26(2/3), 186–194.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of Utah’s Consortium for Electromagnetic Modeling and Inversion (CEMI) and of TechnoImaging. This work was also supported by the RSF, project no. 16-11-10188. We are thankful to Dr. B. Farrelly for providing the FTG data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael S. Zhdanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Zhdanov, M.S. Enhancement and Sharpening the Migration Images of the Gravity Field and Its Gradients. Pure Appl. Geophys. 177, 2853–2870 (2020). https://doi.org/10.1007/s00024-019-02397-9

Download citation

Keywords

  • Gravity
  • gravity gradiometry
  • migration
  • image enhancement
  • target-oriented
  • resolution matrix