A Reappraisal of Seismicity Recorded During the 1996 Gjálp Eruption, Iceland, in Light of the 2014–2015 Bárðarbunga–Holuhraun Lateral Dike Intrusion

Abstract

This study performs a reanalysis of the seismicity recorded during the 1996 Gjálp eruption that occurred at NW Vatnajökull, Iceland. The seismicity was recorded by the temporary HOTSPOT network consisting of 30 three-component broadband stations. In total 301 events were identified between 29 September and 12 October and their phases were manually picked. A velocity model was estimated from P-phase travel times by using VELEST. Events were first located using the algorithm NONLINLOC in order to obtain absolute locations. Precise relative locations were obtained with HYPODD by utilizing catalog and cross-correlation differential travel times. Results show that events clustered first along the SW rim of the Bárðarbunga caldera and later along the Gjálp fissure, with most hypocentral depths located between 3 and 8 km. Waveforms of the 10 largest events that followed the Bárðarbunga earthquake were inverted in order to obtain moment tensors. For all events we found that the deviatoric moment tensor fits the data better than pure double-couple or full moment tensor solutions. Events along the Bárðarbunga caldera exhibited reverse focal mechanisms, while those at the Gjálp fissure exhibited mostly strike-slip faulting. Seismic velocity variations calculated using ambient noise interferometry, point to the possibility that a small subglacial eruption occurred at Bárðarbunga before the main earthquake. This removed melt from the magma chamber causing its roof to collapse, and also resulted in the lateral migration of magma towards the Gjálp fissure. The 2014–2015 Bárðarbunga–Holuhraun eruption shares common characteristics with the 1996 Gjálp eruption, although the size of the latter was much smaller.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ágústsdóttir, T., Woods, J., Greenfield, T., Green, R. G., White, R. S., Winder, T., et al. (2016). Strike-slip faulting during the 2014 Bárðarbunga–Holuhraun dike intrusion, central Iceland. Geophysical Research Letters,43, 1495–1503. https://doi.org/10.1002/2015GL067423.

    Article  Google Scholar 

  2. Alfaro, R., Brandsdóttir, B., Rowlands, D. P., White, R. S., & Gudmundsson, M. T. (2007). Structure of the Grimsvötn central volcano under the Vatnajökull icecap, Iceland. Geophysical Journal International,168, 863–876. https://doi.org/10.1111/j.1365-246X.2006.03238.

    Article  Google Scholar 

  3. Allen, R. M., et al. (2002). Imaging the mantle beneath Iceland using integrated seismological techniques. Journal of Geophysical Research,107(B12), 2325.

    Article  Google Scholar 

  4. Ballmer, S., Wolfe, C. J., Okubo, P. G., Haney, M. M., & Thurber, C. H. (2013). Ambient seismic noise interferometry in Hawaii reveals long-range observability of volcanic tremor. Geophysical Journal International,194, 512–523. https://doi.org/10.1093/gji/ggt112.

    Article  Google Scholar 

  5. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International,169(3), 1239–1260.

    Article  Google Scholar 

  6. Bjarnason, I. T. (2014). Earthquake sequence 1973–1976 in Bardarbunga volcano: seismic activity leading up to eruptions in the NW-Vatnajökull area. Jökull,64, 61–82.

    Google Scholar 

  7. Bjarnason, I. T., Menke, W., Flovenz, O. G., & Caress, D. (1993). Tomographic image of the Mid-Atlantic plate boundary in southwestern Iceland. Journal of Geophysical Research,98, 6607–6622.

    Article  Google Scholar 

  8. Björnsson, H. (1988). Hydrology of ice caps in volcanic regions. Reykjavík: Societas Scientarium Islandica, University of Iceland.

    Google Scholar 

  9. Björnsson, H., & Einarsson, P. (1990). Volcanoes beneath Vatnajökull Iceland: evidence from radio echo-sounding, earthquakes and jökulhlaups. Jökull,40, 147–167.

    Google Scholar 

  10. Björnsson, H., & Gudmundsson, M. T. (1993). Variations in thermal outputs of the subglacial Grimsvötn caldera, Iceland. Geophysical Research Letters,20, 2127–2130.

    Article  Google Scholar 

  11. Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., et al. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geosci.,1, 126–130. https://doi.org/10.1038/ngeo104.

    Article  Google Scholar 

  12. Clarke, D., Zaccarelli, L., Shapiro, N. M., & Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International,186(2), 867–882. https://doi.org/10.1111/j.1365-246X.2011.05074.x.

    Article  Google Scholar 

  13. Einarsson, P., Brandsdóttir, B., Gudmundsson, M. T., & Björnsson, H. (1997). Center of the Iceland hotspot experiences volcanic unrest. Eos, Transactions American Geophysical Union,78, 374–375.

    Article  Google Scholar 

  14. Fichtner, A., & Tkalčić, H. (2010). Insights into the kinematics of a volcanic caldera drop: Probabilistic finite-source inversion of the 1996 Bárðarbunga, Iceland, earthquake. Earth and Planetary Science Letters,297(3–4), 607–615. https://doi.org/10.1016/j.epsl.2010.07.013.

    Article  Google Scholar 

  15. Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports,6, 37733. https://doi.org/10.1038/srep37733.

    Article  Google Scholar 

  16. Green, R. G., Priestley, K., & White, R. S. (2017). Ambient noise tomography reveals upper crustal structure of Icelandic rifts. Earth and Planetary Science Letters,466, 20–31. https://doi.org/10.1016/j.epsl.2017.02.039.

    Article  Google Scholar 

  17. Gudmundsson, A., & Andrew, R. E. B. (2007). Mechanical interaction between volcanoes in Iceland. Geophysical Research Letters,34, L10310. https://doi.org/10.1029/2007GL029873.

    Article  Google Scholar 

  18. Gudmundsson, M. T., & Högnadóttir, T. (2007). Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data. Journal of Geodynamics,43, 153–169. https://doi.org/10.1016/j.jog.2006.09.015.

    Article  Google Scholar 

  19. Gudmundsson, A., Lecoeur, N., Mohajeri, N., & Thordarson, T. (2014). Dike emplacement at Bárðarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology,76, 869. https://doi.org/10.1007/s00445-014-0869-8.

    Article  Google Scholar 

  20. Gudmundsson, M. T., Sigmundsson, F., & Björnsson, H. (1997). Ice-volcano intercation of the 1996 Gjálp subglacial eruption. Vatnajökull, Iceland, Nature,389, 954–957.

    Article  Google Scholar 

  21. Gudmundsson, M. T., et al. (2016). Gradual caldera collapse at Bárðarbunga volcano, Iceland, regulated by lateral magma outflow. Science,353, aaf8988. https://doi.org/10.1126/science.aaf8988.

    Article  Google Scholar 

  22. Herrmann, R. B., & Ammon, C. J. (2002). Computer programs in seismology—source inversions: User’s manual, report. St Louis Mo: St Louis University.

    Google Scholar 

  23. Hudson, T. S., White, R. S., Greenfield, T., Ágústsdóttir, T., Brisbourne, A., & Green, R. G. (2017). Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophysical Research Letters,44, 8785–8794. https://doi.org/10.1002/2017GL074749.

    Article  Google Scholar 

  24. Kissling, E. 1995. Program VELEST user’s guide—short introduction. Institute of Geophysics, ETH Zurich.

  25. Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research,99, 19635–19646.

    Article  Google Scholar 

  26. Konstantinou, K. I. (2002). Deterministic non-linear source processes of volcanic tremor signals accompanying the 1996 Vatnajökull eruption, central Iceland. Geophysical Journal International,148, 663–675.

    Article  Google Scholar 

  27. Konstantinou, K. I., Kao, H., Lin, C.-H., & Liang, W.-T. (2003). Analysis of broad-band regional waveforms of the 1996 September 29 earthquake at Bárðarbunga volcano, central Iceland: investigation of the magma injection hypothesis. Geophysical Journal International,154, 134–145.

    Article  Google Scholar 

  28. Konstantinou, K. I., Nolet, G., Morgan, W. J., Allen, R. M., & Pritchard, M. J. (2000). Seismic phenomena associated with the 1996 Vatnajökull eruption, central Iceland. Journal of Volcanology and Geothermal Research,102, 169–187.

    Article  Google Scholar 

  29. Larsen, G. (2002). A brief overview of eruptions from ice-covered and ice-capped volcanic systems in Iceland during the past 11 centuries: Frequency, periodicity and implications. Geological Society, London, Special Publications,202, 81–90. https://doi.org/10.1144/gsl.sp.2002.202.01.05.

    Article  Google Scholar 

  30. Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise. Seismological Research Letters,85(3), 715726. https://doi.org/10.1785/0220130073.

    Article  Google Scholar 

  31. Lomax, A., & Curtis, A., (2001). Fast, probabilistic earthquake location in 3D models using Oct-Tree importance sampling, Geophysical Research Abstracts 3.

  32. Lomax, A., Michelini, A., & Curtis, A. (2009). Earthquake location, direct, global-search methods, in complexity. In Encyclopedia of complexity and system science, Part 5. Springer, New York, pp. 2449–2473, https://doi.org/10.1007/978-0-387-30440-3.

  33. Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C., (2000). Probabilistic earthquake location in 3D and layered models. In: Thurber, R. (Eds.), Advances in seismic event location, pp. 101–134.

  34. Martí, J., Folch, A., Neri, A., & Macedonio, G. (2000). Pressure evolution during explosive caldera-forming eruptions. Earth and Planetary Science Letters,175, 275–287.

    Article  Google Scholar 

  35. Nettles, M., & Ekström, G. (1998). Faulting mechanism of anomalous earthquakes near Bárðarbunga Volcano, Iceland. Journal of Geophysical Research,103(B8), 17973–17983.

    Article  Google Scholar 

  36. Pagli, C., Sigmundsson, F., Pedersen, R., Einarsson, P., Árnadóttir, T., & Feigl, K. L. (2007). Crustal deformation associated with the 1996 Gjálp subglacial eruption, Iceland: InSAR studies in affected areas adjacent to the Vatnajökull ice cap. Earth and Planetary Science Letters,259, 24–33. https://doi.org/10.1016/j.epsl.2007.04.019.

    Article  Google Scholar 

  37. Panza, G. F., & Saraò, A. (2000). Monitoring volcanic and geothermal areas by full seismic moment tensor inversion: are non-double-couple components always artifacts of modeling? Geophysical Journal International,143, 353–364.

    Article  Google Scholar 

  38. Parks, M. M., et al. (2017). Evolution of deformation and stress changes during the caldera collapse and dyking at Bárðarbunga, 2014–2015: Implication for triggering of seismicity at nearby Tungnafellsjökull volcano. Earth and Planetary Science Letters,462, 212–223. https://doi.org/10.1016/j.epsl.2017.01.020.

    Article  Google Scholar 

  39. Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International,105, 271–284.

    Article  Google Scholar 

  40. Pritchard M. J. (2000). A seismological study of the mantle beneath Iceland, PhD thesis, University of Durham.

  41. Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia). Geophysical Research Letters,22(7), 775–778. https://doi.org/10.1029/95gl00302.

    Article  Google Scholar 

  42. Riel, B., Milillo, P., Simons, M., Lundgren, P., Kanamori, H., & Samsonov, S. (2015). The collapse of Bárðarbunga caldera, Iceland. Geophysical Journal International,202, 446–453. https://doi.org/10.1093/gji/ggv157.

    Article  Google Scholar 

  43. Ruch, J., Wang, T., Xu, W., Hensch, M., & Jónsson, S. (2016). Oblique rift opening revealed by recurring magma injection in central Iceland. Nature Communications,7, 12352. https://doi.org/10.1038/ncomms12352.

    Article  Google Scholar 

  44. Shen, Y., Solomon, S. C., Bjarnasson, I. T., & Wolfe, C. J. (1998). Seismic evidence for a lower-mantle origin of the Iceland plume. Nature,395, 62–65.

    Article  Google Scholar 

  45. Sigmundsson, F., et al. (2015). Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature,517, 191. https://doi.org/10.1038/nature14111.

    Article  Google Scholar 

  46. Spaans, K., & Hooper, A. (2018). Insights into the stress field around Bárðarbunga volcano from the 2014/2015 Holuhraun rifting event. Journal of Geophysical Research Solid Earth,123, 3238–3249. https://doi.org/10.1002/2017JB015274.

    Article  Google Scholar 

  47. Templeton, D. C., & Dreger, D. S. (2006). Non-double-couple earthquakes in the Long Valley volcanic region. Bulletin of the Seismological Society of America,96, 69–79. https://doi.org/10.1785/0120040206.

    Article  Google Scholar 

  48. Thordarson, T., & Larsen, G. (2007). Volcanism in Iceland in historical times: Volcano types, eruption styles and eruptive history. Journal of Geodynamics,43, 118–152. https://doi.org/10.1016/j.jog.2006.09.005.

    Article  Google Scholar 

  49. Tkalčić, H., Dreger, D. S., Foulger, G. R., & Julian, B. R. (2009). The puzzle of the 1996 Bárðarbunga, Iceland earthquake: No volumetric component in the source mechanism. Bulletin of the Seismological Society of America,99, 3077–3085.

    Article  Google Scholar 

  50. Tryggvason, K., Husebye, E. S., & Stefansson, R. (1983). Seismic image of the hypothesized Icelandic hotspot. Tectonophysics,100, 97–118.

    Article  Google Scholar 

  51. Waldhauser, F. (2001). HypoDD: A program to compute double-difference hypocentre locations, U. S. Geological Survey, Open File Report 01-113.

  52. Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America,90(6), 1353–1368.

    Article  Google Scholar 

  53. Wolfe, C. J., Bjarnason, I. T., Vandecar, J., & Solomon, S. C. (1997). Seismic structure of the Iceland mantle plume. Nature,385, 245–247.

    Article  Google Scholar 

  54. Zobin, V. M. (1999). The fault nature of the Ms 5.4 volcanic earthquake preceding the 1996 subglacial eruption of Grimsvötn volcano, Iceland. Journal of Volcanology and Geothermal Research,92, 349–358.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Ministry of Science and Technology of Taiwan (MOST; Grant no.: MOST107-2116-M-008-015) for the financial support of this study in the form of a research grant. Ika Wahyu Utami held a scholarship from the School of Earth Sciences while studying for a graduate degree at National Central University. The waveforms analyzed in this study are freely available from the IRIS database. We would like to thank the Editor Ben Edwards for handling our manuscript, as well as Tim Greenfield and an anonymous reviewer for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. I. Konstantinou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konstantinou, K.I., Utami, I.W., Giannopoulos, D. et al. A Reappraisal of Seismicity Recorded During the 1996 Gjálp Eruption, Iceland, in Light of the 2014–2015 Bárðarbunga–Holuhraun Lateral Dike Intrusion. Pure Appl. Geophys. 177, 2579–2595 (2020). https://doi.org/10.1007/s00024-019-02387-x

Download citation

Keywords

  • Gjálp
  • Bárðarbunga
  • Vatnajökull
  • eruption
  • seismicity
  • Iceland