Spatio-Seasonal Variations in Long-Term Trends of Offshore Wind Speeds Over the Black Sea; an Inter-Comparison of Two Reanalysis Data

Abstract

Spatio-seasonal variability of long-term trends in mean and 95th percentile wind speeds for the term between 1979 and 2016, over the Black Sea is presented. Our aim is to contribute the existing literature by presenting the inhomogeneous spatial distribution of the long-term trends in both moderate and severe wind speeds on a monthly basis. The analysis is conducted by using two different data; European Centre for Medium-Range Weather Forecasts-ERA-Interim and U.S. National Centers for Environmental Prediction-Climate Forecast System Reanalysis (CFSR) to perform a comparative analysis. The non-parametric Mann–Kendall and Sen’s Slope methods are used to determine the trends and their significance over the Black Sea. CFSR winds presented higher interannual variability than the ERA-Interim. ERA-Interim indicates that annual mean and 95th percentile wind speeds have decreasing trends down to − 0.17%/year and − 0.20%/year in the Sea of Azov, while they have an increasing trend up to 0.35%/year and 0.38%/year in the eastern part, respectively. Results indicate that wind speeds are increasing over 28% ~ 36% of the Black Sea surface area while the wind speeds are decreasing over 2% ~ 4% of the surface area. Pacific North American Oscillation presented an influence almost all over the Black Sea with statistically significant correlation coefficients over 0.5. North Atlantic Oscillation dominates over the southwestern, western and northern Black Sea with inverse correlation coefficients over 0.6. ERA-Interim and CFSR data illustrated a similar distribution pattern over the Black Sea in means of the relation of variations in wind speeds to the teleconnection indices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Akpinar, A., & Bingolbali, B. (2016). Long-term variations of wind and wave conditions in the coastal regions of the Black Sea. Natural Hazards,84(1), 69–92. https://doi.org/10.1007/s11069-016-2407-9.

    Article  Google Scholar 

  2. Arkhipkin, V. S., Gippius, F. N., Koltermann, K. P., & Surkova, G. V. (2014). Wind waves in the Black Sea: results of a hindcast study. Natural Hazards and Earth Systems Sciences,14, 2883–2897.

    Article  Google Scholar 

  3. Athanasatos, S., Michaelides, S., & Papadakis, M. (2014). Identification of weather trends for use as a component of risk management for port operations. Natural Hazards,72, 41–61. https://doi.org/10.1007/s11069-012-0491-z.

    Article  Google Scholar 

  4. Aydoğan, B. (2017). Offshore wind power atlas of the Black Sea region. Journal of Renewable and Sustainable Energy,9, 013305. https://doi.org/10.1063/1.4976968.

    Article  Google Scholar 

  5. Aydoğan, B., & Ayat, B. (2018). Spatial variability of long-term trends of significant wave heights in the Black Sea. Applied Ocean Research,79, 20–35. https://doi.org/10.1016/j.apor.2018.07.001.

    Article  Google Scholar 

  6. Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review,115, 1083–1126.

    Article  Google Scholar 

  7. Cakiroglu, A. M., Cevher, N. C., & Agirbas, E. (2017). The meteorological Investigation of Turkish coasts of the Black Sea. Journal of Anatolian Environmental and Animal Sciences,2(3), 53–58.

    Article  Google Scholar 

  8. Climate Prediction Center (CPC). (2011). Northern hemisphere teleconnection patterns. (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.html)

  9. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society,137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  10. Drapela, K., & Drapelova, I. (2011). Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Mendelova Univerzita v Brně, Beskydy,4, 133–146.

    Google Scholar 

  11. Dyer, A. J. (1974). A review of flux-profile relationships. Boundary Layer Meteorology,7, 363–372.

    Article  Google Scholar 

  12. Efimov, V. V., & Anisimov, A. E. (2011). Climatic Parameters of Wind Field Variability in the Black Sea Region: numerical Reanalysis of Regional Atmospheric Circulation. Izvestiya, Atmospheric and Oceanic Physics,47(3), 350–361.

    Article  Google Scholar 

  13. Ganea, D., Mereuta, E., & Rusu, L. (2018). Estimation of the near future wind power potential in the Black Sea. Energies. https://doi.org/10.3390/en11113198.

    Article  Google Scholar 

  14. Ganea, D., Mereuta, E., & Rusu, E. (2019). An evaluation of the wind and wave dynamics along the European coasts. Marine Science and Engineering. https://doi.org/10.3390/jmse7020043.

    Article  Google Scholar 

  15. Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., et al. (2018). Climatic preferences for beach tourism: an empirical study on Greek islands. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-2612-4.

    Article  Google Scholar 

  16. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Company Inc.

    Google Scholar 

  17. Hasanean, H. M. (2005). Variability of teleconnections between the Atlantic subtropical high and the Indian monsoon low and related impacts on summer temperature over Egypt. Atmospheric Science Letters,6, 176–182. https://doi.org/10.1002/asl.113.

    Article  Google Scholar 

  18. Healy, T. R. (2018). Coastal wind effects. In C. Finkl & C. Makowski (Eds.), Encyclopedia of coastal science. Encyclopedia of earth sciences series. New York: Springer.

    Google Scholar 

  19. Holtslag, A. A. M., & Bruin, H. A. R. (1988). Applied modeling of the nighttime surface energy balance over land. Journal of Applied Meteorology,27, 689–704.

    Article  Google Scholar 

  20. Jiang, Y., Luo, Y., Zhao, Z., & Tao, S. (2010). Changes in wind speed over China during 1956–2004. Theoretical and Applied Climatology,99, 421–430. https://doi.org/10.1007/s00704-009-0152-7.

    Article  Google Scholar 

  21. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika,30(1–2), 81–93.

    Article  Google Scholar 

  22. Kendall, M. G. (1970). Rank correlation methods (4th ed.). London: Griffin.

    Google Scholar 

  23. Kostianoy, A. G., & Kosarev, A. N. (2008). The Black Sea environment. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  24. Kubryakov, A., Stanichny, S., Shokurov, M., & Garmashov, A. (2019). Wind velocity and wind curl variability over the Black Sea from QuikScat and ASCAT satellite measurements. Remote Sensing of Environment,224, 236–258. https://doi.org/10.1016/j.rse.2019.01.034.

    Article  Google Scholar 

  25. Li, Z., Yan, Z., Tu, K., Liu, W., & Wang, Y. (2011). Changes in wind speed and extremes in Beijing during 1960–2008 based on homogenized observations. Advances in Atmospheric Sciences,28(2), 408–420. https://doi.org/10.1007/s00376-010-0018-z.

    Article  Google Scholar 

  26. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica,13(3), 245–259.

    Article  Google Scholar 

  27. Masuda, D., Kai, S., Yamamoto, N., et al. (2014). The effect of lunar cycle, tidal condition and wind direction on the catches and profitability of Japanese common squid Todarodes pacificus jigging and trap-net fishing. Fisheries Science,80(6), 1145–1157. https://doi.org/10.1007/s12562-014-0799-6.

    Article  Google Scholar 

  28. Onea, F., & Rusu, E. (2012). Wind energy assessments along the Black Sea basin. Meteorological Applications,21(2), 316–329. https://doi.org/10.1002/met.1337.

    Article  Google Scholar 

  29. Özsoy, E., & Ünlüata, Ü. (1997). Oceanography of the Black Sea: a review of some recent results. Earth-Science Reviews,42, 231–272.

    Article  Google Scholar 

  30. Rusu, L., Bernardino, M., & Guedes Soares, C. (2014). Wind and wave modelling in the Black Sea. Journal of Operational Oceanography,7(1), 5–20. https://doi.org/10.1080/1755876X.2014.11020149.

    Article  Google Scholar 

  31. Rusu, L., Raileanu, A. B., & Onea, F. (2018). A comparative analysis of the wind and wave climate in the Black Sea along the shipping routes. Water,10(7), 924–942. https://doi.org/10.3390/w10070924.

    Article  Google Scholar 

  32. Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., et al. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society,91, 1015–1057. https://doi.org/10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  33. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., et al. (2014). The NCEP Climate Forecast System Version 2. Journal of Climate,27, 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1.

    Article  Google Scholar 

  34. Salmi, T., Maatta, A., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann Kendall Test and Sen’s slope estimates the excel template application MAKESENS. Finnish Meteorological Institute, Publications on Air Quality, No. 31, Helsinki.

  35. Schlitzer, R. (2019). Ocean data view. https://odv.awi.de. Accessed 12 Oct 2019.

  36. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association,63, 1379–1389.

    Article  Google Scholar 

  37. Shadid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology,104(3–4), 489–499. https://doi.org/10.1007/s00704-010-0363-y.

    Article  Google Scholar 

  38. Shepherd, J. G., Brewer, P. G., Oschlies, A., & Watson, A. J. (2017). Ocean ventilation and deoxygenation in a warming world: introduction and overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,375, 1–9. https://doi.org/10.1098/rsta.2017.0240.

    Article  Google Scholar 

  39. Sterl, A., & Caires, S. (2005). Climatology, variability and extrema of ocean waves: the Web-based KNMI/ERA-40 wave atlas. International Journal of Climatology. https://doi.org/10.1002/joc.1175.

    Article  Google Scholar 

  40. Stopa, J. S., & Cheung, K. F. (2014). Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Modelling,75, 65–83. https://doi.org/10.1016/j.ocemod.2013.12.006.

    Article  Google Scholar 

  41. Surkova, G. V., Arkhipkin, V. S., & Kislov, A. V. (2013). Atmospheric circulation and storm events in the Black Sea and Caspian Sea. Central European Journal of Geoscience,5(4), 548–559.

    Google Scholar 

  42. Troccoli, A., Muller, K., Coppin, P., Davy, R., Russell, C., & Hirsch, A. L. (2012). Long-term wind speed trends over Australia. Journal of Climate,25, 170–183. https://doi.org/10.1175/2011JCLI4198.1.

    Article  Google Scholar 

  43. Tuller, S. E. (2004). Measured WS trends on the west coast of Canada. International Journal of Climatology,24, 1359–1374. https://doi.org/10.1002/joc.1073.

    Article  Google Scholar 

  44. Valchev, N., Davidan, I., Belberov, Z., Palazov, A., & Valcheva, N. (2010). Hindcasting and assessment of the western Black sea wind and wave climate. Environmental Protection and Ecology,11(3), 1001–1012.

    Google Scholar 

  45. Valchev, N., Trifonova, E., & Andreeva, N. (2012). Past and recent trends in the western Black Sea storminess. Natural Hazards and Earth System Sciences,12, 961–977. https://doi.org/10.5194/nhess-12-961-2012.

    Article  Google Scholar 

  46. Velea, L., Bojariu, R., & Cica, R. (2014). Occurrence of extreme winds over the Black Sea during January under present and near future climate. Turkish Journal of Fisheries and Aquatic Sciences,14, 973–979. https://doi.org/10.4194/1303-2712-v14_4_17.

    Article  Google Scholar 

  47. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern hemisphere winter. Monthly Weather Review,109, 784–812.

    Article  Google Scholar 

  48. Wang, D. W., & Hwang, P. A. (2001). An operational method for separating wind sea and swell from ocean wave spectra. Atmospheric Oceanic Technology,18, 2052–2062. https://doi.org/10.1175/1520-0426.

    Article  Google Scholar 

  49. Weisse, R., & Gunther, H. (2007). Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dynamics,57, 161–172. https://doi.org/10.1007/s10236-006-0094-x.

    Article  Google Scholar 

  50. Young, I. R., Zieger, S., & Babain, A. (2011). Global trends in wind speed and wave height. Science,332(6028), 451–455. https://doi.org/10.1126/science.1197219.

    Article  Google Scholar 

  51. Zainescu, F., Tatui, F., Valchev, N., & Vespremeanu-Stroe, A. (2017). Storm climate on the Danube delta coast: evidence of recent storminess change and links with large-scale teleconnection patterns. Natural Hazards,87, 599–621. https://doi.org/10.1007/s11069-017-2783-9.

    Article  Google Scholar 

  52. Zecchetto, S., & de Biasio, F. (2007). Sea surface winds over the Mediterranean Basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. Journal of Applied Meteorology and Climatology,46, 814–827.

    Article  Google Scholar 

  53. Zeng, X., Dickinson, R. E., & He, Y. (1998). Effect of surface sublayer on surface skin temperature and fluxes. Journal of Climate,11, 537–550.

    Article  Google Scholar 

  54. Zhang, D., Cronin, M. F., Wen, C., Xue, Y., Kumar, A., & McClurg, D. (2016). Assessing surface heat fluxes in atmospheric reanalyses with a decade of data from the NOAA Kuroshio Extension Observatory. Journal of Geophysical Research: Oceans,121, 6874–6890. https://doi.org/10.1002/2016JC011905.

    Article  Google Scholar 

  55. Zheng, C. W., Pan, J., & Li, C. Y. (2016). Global oceanic wind speed trends. Ocean and Coastal Management,129, 15–24. https://doi.org/10.1016/j.ocecoaman.2016.05.001.

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the Scientific and Technological Research Council of Turkey, TUBITAK (Grant Number: 116M061) and European Union Era.Net RusPlus (Grant Number: BS STEMA 42/2016). Authors thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing ERA-Interim wind data, National Oceanic and Atmospheric Administration (NOAA) National Weather Service for providing CFSR wind data, and the EMODnet Bathymetry Portal for shoreline data.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tunay Çarpar, Berna Ayat and Burak Aydoğan. The first draft of the manuscript was written by Tunay Carpar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Berna Ayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çarpar, T., Ayat, B. & Aydoğan, B. Spatio-Seasonal Variations in Long-Term Trends of Offshore Wind Speeds Over the Black Sea; an Inter-Comparison of Two Reanalysis Data. Pure Appl. Geophys. 177, 3013–3037 (2020). https://doi.org/10.1007/s00024-019-02361-7

Download citation

Keywords

  • Long-term trend
  • wind speed
  • Black Sea
  • teleconnection
  • spatiotemporal variability
  • monthly variability