Skip to main content
Log in

One-Dimensional Velocity Model, Station Correction and Earthquake Relocation of Local Earthquakes in the Koyna–Warna Region, India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this paper we investigated the feasibility of using the higher-frequency waveforms to characterize the seismicity in the Koyna–Warna region, globally well-known for its reservoir-triggered earthquakes. The local seismicity and source parameters have been extensively explored by many researchers using various types of data, e.g. analog data, broadband seismological data, and deep seismic sounding data. However, here we have utilized the seismological data recorded by 97 temporary 4.5-Hz geophones to locate the local seismicity in the region. We first investigated an appropriate 1-D P-wave velocity model through the inversion of P- and S-times. In order to compensate for the thick and laterally heterogeneous basalt, we incorporated the station corrections in the 1-D velocity inversion process. The station correction varies from + 0.09 to − 0.20 s for the P-waves, with clear demarcations of positive and negative station corrections corresponding to the northern and southern regions, respectively. The patterns of positive and negative station corrections suggested that the northern part is characterized by lower velocity, while slighter higher velocities present in the southern part of the study area are relative to the estimated 1-D velocity model. The earthquake locations are further improved by using the double-difference (hypoDD) approach, which enabled us to accurately map shallow subsurface seismogenic faults in the region. The data comprises 10,062 P-wave and 9049 S-wave catalog differential times from 348 earthquakes (1.0 ≤ ML ≤ 4.5). The precisely relocated earthquakes (ERH < 0.05 km ERZ < 0.5 km and rms < 0.02 s) form the three clusters of earthquakes in the NW–SE direction along the lineaments close to Warna Reservoir. The observed seismicity trends on the surface could be due to the vertical manifestations of faults or fractures. Their alignments are confirmed by the analysis of focal mechanism which exhibits a predominant normal type of faults with one nodal plane consistent with the main alignment of the seismic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agrawal, P. K., Pandey, O. P., & Chetty, T. R. K. (2004). Aeromagnetic anomalies lineaments and seismicity in Koyna-Warna region. Journal of Indian Geophysical Union,8, 229–242.

    Google Scholar 

  • Arya, A. S., Murthy, T. V. R., Garg, J. K., Naraian, A., & Baldev, S. (1995). Lineament pattern and its possible relationship with Killari earthquake: A case study using IRS data. Geological Survey of India, Spl. Publication, 27, 211–214.

    Google Scholar 

  • Bhattacharya, S. N. (1981). Observation and inversion of surface wave group velocities across central India. Bulletin of the Seismological Society of America,71, 1489–1501.

    Google Scholar 

  • Catchings, R. D., Dixit, M. M., Goldmen, M. R., & Kumar, S. (2015). Structure of the Koyna-Warna seismic zone Maharashtra India: A possible model for large induced earthquakes elsewhere. Journal of Geophysical Research,119, 6372–6398.

    Google Scholar 

  • Chadha, R. K., Gupta, H. K., Kumpel, H. J., Mandal, P., Nageswara Rao, A., Narendra, K., et al. (1997). Delineation of active faults nucleation process and pore pressure measurements at Koyna India. Pure and Applied Geophysics,150, 551–562.

    Article  Google Scholar 

  • Dixit, M. M., Kumar, S., Catchings, R. D., Suman, K., Sarkar, D., & Sen, M. K. (2014). Seismicity faulting and structure of the Koyna-Warna seismic region in western India from local earthquake tomography and hypocenter locations. Journal of Geophysical Research,119, 6372–6398.

    Google Scholar 

  • Douglas, A. (1967). Joint epicenter determination. Nature,215, 47–48.

    Article  Google Scholar 

  • Dube, R. K., Bhayana, J. C., & Chaudhury, H. M. (1973). Crustal structure of the Peninsular India. Pure and Applied Geophysics,109, 1717–1727.

    Article  Google Scholar 

  • Gomez, D. I., & Talwani, P. (2010). Hydromechanics of the Koyna-Warna region India. Pure and Applied Geophysics,167, 183–213.

    Article  Google Scholar 

  • Guha, S. K., Gosavi, P. D., Varma, M. M., Agarwal, S. P., Padale, J. G., & Marwadi, S. C. (1968). Recent seismic disturbances in the Koyna Hydroelectric Project, 1 (p. 16). Maharashtra: Rep. CWPRS.

    Google Scholar 

  • Gupta, H. K., Narain, H., Rastogi, B. K., & Mohan, I. (1969). A study of the Koyna Earthquake of Dec 10, 1967. Bulletin of the Seismological Society of America,59, 1149–1162.

    Google Scholar 

  • Gupta, H. K., Rao, C. V. R. K., & Rastogi, B. K. (1980). An investigation of earthquakes in Koyna region Maharashtra for period October 1973 through December 1976. Bulletin of Seismological Society of America,70, 1833–1847.

    Google Scholar 

  • Gupta, H. K., et al. (2007). A new zone of seismic activity at Koyna India. Journal of Geological Society of India,69, 1136–1137.

    Google Scholar 

  • Kaila, K. L., Reddy, P. R., Dixit, M. M., & Lazarenko, M. A. (1981). Deep crustal structure at Koyna, Maharashtra, indicated by deep seismic soundings. Journal of the Geological Society of India,22, 1–16.

    Google Scholar 

  • Kaila, K. L., Reddy, P. R., Murty, K. & Tripatchi, K. M. (1979). Deep Seismic Sounding studies along Koyna I and Koyna II profiles in Deccan Trap covered area of Maharashtra state India. A Technical report CSIR-N. G. R. I., Hyderabad.

  • Kissling, E., Ellsworth, W. L., Eberhary-Phillips, D., & Kradolfer, U. (1994). Initial reference model in local earthquake tomography. Journal of Geophysical Research,99, 19635–19646.

    Article  Google Scholar 

  • Krishna, V. G. (2006). INVSP gathers of local earthquake seismograms: an approach for modelling the upper crustal P and S velocity structure. Geophysical Journal International,166, 148–154.

    Article  Google Scholar 

  • Kumar, S., & Dixit, M. M. (2017). Three dimensional velocity structure of the Koyna-Warna region using local earthquake tomography. Journal of the Geological Society of India,90, 692–697.

    Article  Google Scholar 

  • Mandal, P., Rastogi, B. K., & Sarma, C. S. P. (1998). Source parameters of Koyna earthquakes India. Bulletin of the Seismological Society of America,88, 833–842.

    Google Scholar 

  • Ottemöller, L., Voss, P., & Havskov, J. (2011). SEISAN earthquake analysis software for Windows Solaris Linux and MacOSX Version 90. Available at https://www.uib.no/rg/geodyn/artikler/2010/02/software.

  • Paige, C. C., & Saunders, M. A. (1982). LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2), 195–209.

    Article  Google Scholar 

  • Peshwa, V. V. (1991). Geological studies of Chandoli Dam site area Warna Valley Sangli Dist Maharashtra State: Studies based on remote sensing techniques. Unpublished report to Maharashtra Engineering Research Institute Nasik 45. Pune: Department of Geology, University of Pune.

    Google Scholar 

  • Pujol, J. (1988). Comments on the joint determination of hypocenters and station corrections. Bulletin of Seismological Society of America,78, 1179–1189.

    Google Scholar 

  • Rai, S. S., Singh, S. K., Sarma, R., Srinagesh, D., Reddy, K. N. S., Prakasam, K. S., et al. (1999). What triggers Koyna region earthquakes? Preliminary results from seismic tomography digital array. Proceeding of Earth and Planetary Science,108, 1–14.

    Google Scholar 

  • Rastogi, B. K. (2017). Migration of seismicity and pore pressure diffusion for five decades long Koyna-Warna sequence and precursory nucleation process for earthquake forecasting. Journal of the Geological Society of India,90(6), 698–703.

    Article  Google Scholar 

  • Rastogi, B. K., Chadha, R. K., Sarma, C. S. P., Mandal, P., Satyanarayana, H. V., Narendra, K., et al. (1995). Study of seismicity around Koyna–Warna reservoirs. In NGRI Rept. 95-SEISM-187 (p 42).

  • Rastogi, B. K., Chadha, R. K., Sarma, C. S. P., Mandal, P., Satyanarayana, H. V. S., Raju, I. P., et al. (1997). Seismicity at Warna Reservoir near Koyna through 1995. Bulletin of Seismological Society of America,8, 1484–1497.

    Google Scholar 

  • Rastogi, B. K., & Talwani, P. (1980). Relocation of Koyna Earthquakes. Bulletin of Seismological Society of America,70, 1849–1868.

    Google Scholar 

  • Sarma, P. R., & Srinagesh, D. (2007). Improved earthquake locations in the Koyna-Warna Seismic zone. Natural Hazards,40, 563–571.

    Article  Google Scholar 

  • Shashidhar, D., Mallika, K., Mahato, C., Maity, B. S., Sudheer, K., Satyanarayana, H. V., et al. (2019). A catalogue of earthquakes in the Koyna-Warna region, Western India (2005–2017). Journal of the Geological Society of India,93, 7–24.

    Article  Google Scholar 

  • Shashidhar, D., Rao, N. P., & Gupta, H. K. (2011). Waveform inversion of broadband data of local earthquakes in the Koyna-Warna region western India. Geophysical Journal International,185, 292–304.

    Article  Google Scholar 

  • Snoke, J. A. (2003). FOCME: FOCal MEChanism determinations. In W. H. K. Lee, et al. (Eds.), International handbook of earthquake and engineering seismology, chap. 85.12. San Diego: Academic.

    Google Scholar 

  • Srinagesh, D., & Sarma, P. R. (2005). High precision earthquake location in Koyna-Warna seismic zone reveal depth variation in the brittle-ductile transition zone. Geophysical Research Letter,32, L08310.

    Article  Google Scholar 

  • Srivastava, H. N., Verma, R. K., Verma, G. S., & Chaudhury, H. M. (1984). Crustal structure of the Koyna region using explosion data from deep seismic sounding. Tectonophysics,110, 61–72.

    Article  Google Scholar 

  • Sukanta, R., Rao, N. P., Akkiraju, V. V., Goswami, D., Sen, M., Bansal, B. K., & Nayak, S. (2013). Granitic basement below Deccan Traps Unearthed by drilling in the Koyna seismic zone, Western India. Journal of the Geological Society of India, 81, 289–290.

    Article  Google Scholar 

  • Suman, K., Kumar, S., Dixit, M. M., & Rama Rao, P. (2015). 1-D velocity model delineated using a dense seismic network in the Koyna-Warna region, Maharashtra, India. The Journal of Indian Geophysical Union,19(2), 182–189.

    Google Scholar 

  • Talwani, P. (1995). Speculation on the causes of continuing seismicity near Koyna Reservoir India. Pure and Applied Geophysics,145, 167–174.

    Article  Google Scholar 

  • Talwani, P. (1997a). On the nature of Reservoir-induced seismicity. Pure and Applied Geophysics,150, 473–492.

    Article  Google Scholar 

  • Talwani, P. (1997b). Seismotectonics of the Koyna-Warna Area India. Pure and Applied Geophysics,150, 511–550.

    Article  Google Scholar 

  • Talwani, P., Kumara Swamy, S. V., & Sawalwade, C. B. (1996). The revaluation of seismicity data in the Koyna-Warna area. A Report South Carolina Columbia South Carolina USA, pp 109.

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1995). A new version of the Generic Mapping Tools (GMT). Eos Transaction American Geophysical Union, 76(33), 329. https://doi.org/10.1029/95EO00198

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Director of the CSIR-National Geophysical Research Institute, Hyderabad for his kind permission to publish this work (manuscript reference no. NGRI/Lib/2018/Pub-91). We are very thankful to Prof. Harsh K. Gupta for providing valuable suggestions. For 1-D inversion of velocities and hypocenter locations, VELEST software was used (http://www.seg.ethz.ch/software/velest.html). The well-known SEISAN software was used to prepare the catalog (https://www.uib.no/rg/geodyn/artikler/2010/02/software). For relocation, the double-difference code (hypoDD) is used (https://www.ldeo.columbia.edu/~felixw/hypoDD.html). The manuscript has been improved immensely by the comments by the editor and two anonymous reviewers. Figures were generated using SigmaPlot 2010 and the Generic Mapping Tool (GMT) (Wessel and Smith 1995). Financial assistance by the Ministry of Earth Science (MoES), New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, P. One-Dimensional Velocity Model, Station Correction and Earthquake Relocation of Local Earthquakes in the Koyna–Warna Region, India. Pure Appl. Geophys. 176, 4761–4782 (2019). https://doi.org/10.1007/s00024-019-02264-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02264-7

Keywords

Navigation