Skip to main content
Log in

Present-Day Stress Field in Egypt Based on a Comprehensive and Updated Earthquake Focal Mechanisms Catalog

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The present-day stress field in Egypt has been investigated on the basis of updated earthquake focal mechanism catalog covering the period from 1951 to 2017. Our catalog contains 234 focal mechanisms compiled from previous studies in addition to 22 new source mechanism solutions achieved in this study. According to the distribution of the recent earthquake epicentres, Egypt is divided into nine seismotectonic regions. The available fault plane solutions in Egypt demonstrate a spatial variability of source mechanisms, which categorize the study area into three groups. The first group includes Dahshour, Beni Suef, Cairo-Suez district, Northern-Central Gulf of Suez and Southern Gulf of Suez, which characterized by pure normal faulting mechanism to normal faulting with strike-slip component. Pure strike-slip faulting has clearly characterised Aswan and Gulf of Aqaba regions in the second group. However, the third group, which contains Abu Dabbab and the northern Egyptian continental margin, is characterized by thrust and strike-slip faulting. To calculate the orientation of the principle stress axes and the shape ratio we have applied the stress inversion technique. The present-day stress regime shows a variability of the tectonic stresses including extensional tectonic, transtensional and strike-slip. The transtensional stress regime with a maximum horizontal extensional NNE stress axis represents the dominant stress field pattern in Egypt. The results exhibit a good agreement with the tectonic settings and recent deformations in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Seismicity data (mb ≥ 3) was compiled after Riad and Meyers (1985) from (1900–1964); ISC (19642005) and ENSN (19982017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel-Aal, A. A., & Badreldin, H. (2016). Seismological aspects of the 27 June 2015 Gulf of Aqaba earthquake and its sequence of aftershocks. Journal of Seismology,20, 935–952. https://doi.org/10.1007/s10950-016-9572-x.

    Article  Google Scholar 

  • Abdel-Aal, A., Price, J., Vaitl, D. J., & Shrallow, A. (1994). Tectonic evolution of the Nile Delta, its impact on sedimentation and hydrocarbon. In 12th Petroleum exploration and production conference, Nov. 1994, pp. 19–34.

  • Abdelazim, M., Samir, A., Abu El-Nader, I., Badawy, A., & Hussein, H. M. (2016). Seismicity and focal mechanisms of earthquakes in Egypt from 2004 to 2011. NRIAG Journal of Astronomy and Geophysics. https://doi.org/10.1016/j.nrjag.2016.08.002.

    Article  Google Scholar 

  • Abdel-Fattah, R. (1999). Seismotectonic studies on the Gulf of Suez Region, Egypt. M.Sc. thesis, Fac. of Sci., Geology Dept., Mansoura Univ.

  • Abdel-Rahman, M. A., & El-Etr, H. A. (1978). The orientational characteristics of the structure grain of the Eastern Desert of Egypt. In Symposium of the evolution and mineralization of the Arabian–Nubian Shield, Institute of Appl. Geology, Jeddah, SA.

  • Abou Elenean, K. M. (1997). A study on the seismotectonic of Egypt in relation to the Mediterranean and Red Sea tectonics. Ph.D thesis, Ain-Shams Univ., Cairo, Egypt.

  • Abou Elenean, K. M. (2007). Focal Mechanism of small and moderate size earthquakes recorded by the Egyptian National Seismic Network (ENSN), Egypt. NRIAG Journal of Geophysics,6, 117–151.

    Google Scholar 

  • Abu El-Nader, I. F., Shater, A., & Hussein, H. M. (2016). Mapping b-values beneath Abu Dabbab from June to August 2004 earthquake swarm. NRIAG Journal of Astronomy and Geophysics. https://doi.org/10.1016/j.nrjag.2016.07.002.

    Article  Google Scholar 

  • Ali Sherif, M. (2011). Source characterizations of inland earthquakes in Egypt. Ph.D thesis, Ain-Shams Univ, Cairo, Egypt.

  • Ali Sherif, M. (2016). Statistical analysis of seismicity in Egypt and its surroundings. Arabian Journal of Geosciences,9(1), 1. https://doi.org/10.1007/s12517-015-2079-x.

    Article  Google Scholar 

  • Awad, H. (1994). Investigation of the tectonic setting, seismic activity and crustal deformation in Aswan seismic region. Egypt, Ph.D. thesis, Tokyo University.

  • Badawy, A. (2001). The present-day stress field in Egypt. Annals of Geophysics,44, 557–570.

    Google Scholar 

  • Badawy, A. (2005). Present-day seismicity, stress field and crustal deformation of Egypt. Journal of Seismology,9, 267–276.

    Article  Google Scholar 

  • Badawy, A., Abdel-Fattah, A. K., Ali Sherif, M., & Farid, W. (2008). Source parameters of the ML 4.1 earthquake of November 08, 2006, southeast Beni Suef, northern Egypt. Journal of African Earth Sciences,51, 151–159.

    Article  Google Scholar 

  • Badawy, A., AL-Werr, A., & Ali Sherif, M. (2014). Relative location and source mechanism of inland earthquakes in Northern Egypt. Journal of Seismology. https://doi.org/10.1007/s10950-013-9378-z.

    Article  Google Scholar 

  • Badawy, A., & Horváth, F. (1999). Recent stress field of the Sinai subplate region. Tectonophysics,304, 385–403.

    Article  Google Scholar 

  • Badawy, A., Mohamed, G., Omar, K., & Farid, W. (2015). The northern Egyptian continental margin. Journal of African Earth Sciences,101, 177–185. https://doi.org/10.1016/j.jafrearsci.2014.09.009.

    Article  Google Scholar 

  • Badreldin, H., Abdel-Aal, A. A., Toni, M., & El-Faragawy, K. (2019). Moment tensor inversion of small-to-moderate size local earthquakes in Egypt. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2018.12.004. (in press).

    Article  Google Scholar 

  • Bartov, Y., Steinitz, G., Eyal, M., & Eyal, Y. (1980). Sinistral movement along the Gulf of Aqaba; its age and relation to the opening of the red Sea. Nature,285, 220–222.

    Article  Google Scholar 

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine,96, 109–117.

    Article  Google Scholar 

  • Colletta, B., Le Quellec, P., Letouzey, J., & Moretti, I. (1988). Longitudinal evolution of the Suez rift structure, Egypt. Tectonophysics,153, 221–233.

    Article  Google Scholar 

  • Courtillot, V., Armijo, R., & Tapponier, P. (1987). The Sinai triple junction revisited. Tectonophysics,141, 181–190.

    Article  Google Scholar 

  • Cronin, V. S. (2004). A draft primer on focal mechanism solutions for geologists. In “On the Cutting Edge” workshop on teaching structural geology in the 21st century”, Science Education Resource Center, Carleton College, p. 14.

  • Czirok, L. (2016). Analysis of stress relations using focal mechanism solutions in the pannonian basin. Geosciences and Engineering,5(8), 65–84.

    Google Scholar 

  • Daggett, P., Morgan, P., Boulous, F., Hennin, S., El-Sherif, A., El-Sayed, A., et al. (1986). Seismicity and active tectonics of the Egyptian Red Sea margin and the northern Red Sea. Tectonophysics,125, 313–324.

    Article  Google Scholar 

  • Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics,482, 105–128.

    Article  Google Scholar 

  • Egyptian National Seismic Network (ENSN) Bulletin. (1998–2017). Earthquakes in and around Egypt. National Research Institute of Astronomy and Geophysics, Egypt.

  • El-Shazly, E. M. (1977). The geology of the Egyptian region. The Ocean Basin and Margins, 145, 193–207.

    Google Scholar 

  • Fojtikova, L., & Vavryčuk, V. (2018). Tectonic stress regime in the 2003–2004 and 2012–2015 earthquake swarms in the Ubaye Valley, French Alps. Pure and Applied Geophysics, 175, 1997–2008.

    Article  Google Scholar 

  • Gephart, J., & Forsyth, D. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research,89, 9305–9320.

    Article  Google Scholar 

  • Hassib, G. (1990). A study on the earthquake mechanics around the High Dam Lake, Aswan, Egypt. Ph.D thesis, Faculty of Science, South Valley Univ, Sohag, Egypt.

  • Hofstetter, A., Thio, H., & Shamir, G. (2003). Source mechanism of the 22/11/95 Gulf of Aqaba Earthquake and its aftershock sequence. J. Seismol.,7, 99–114.

    Article  Google Scholar 

  • Hosny, A., Ali Sherif, M., & Abed, A. (2013). Study of the 26 December 2011 Aswan earthquake, Aswan area, South of Egypt. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-013-1098-8.

    Article  Google Scholar 

  • Huang, P. Y., & Solomon, S. C. (1987). Centeoid depths and mechanisms of Mid-Ocean Ridge earthquakes in the Indian Ocean Gulf of Aden and Red Sea. Journal of Geophysical Research, 92(B2), 1361–1382.

    Article  Google Scholar 

  • Hussein, H. M., Abou Elenean, K. M., Marzouk, I. A., Korrat, I. M., Abu El-Nader, I. F., Ghazala, H., et al. (2013). Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. Journal of African Earth Sciences,81, 1–15.

    Article  Google Scholar 

  • Hussein, H. M., Marzoul, I., Hurukawa, N., & Moustafa, A. (2006). Preliminary seismicity and focal mechanisms in the southern Gulf of Suez: August 1994 through December 1997. Journal of African Earth Sciences,45, 48–60. https://doi.org/10.1016/j.jafrearsci.2006.01.006.

    Article  Google Scholar 

  • Hussein, H. M., Moustafa, S. S. R., Elawadi, E., Al-Arifi, N. S., & Hurukawa, N. (2011). Seismological aspects of the Abou Dabbab Region, Eastern Desert, Egypt. Seismological Research Letters. https://doi.org/10.1785/gssrl.82.1.81.

    Article  Google Scholar 

  • ISC. (1964–2005). Bulletins of the International Seismological Centre, Edinburgh. http://www.isc.ac.uk/iscbulletin/search/bulletin/.

  • Jackson, J., & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Journal of Geophysics,93, 45–73.

    Article  Google Scholar 

  • Kebeasy, R. M., Maamon, M., & Ibrahim, E. (1982). Aswan lake induced earthquake. Bulletin International Institute of Seismology and Earthquake Engineering, Tsukuba,19, 155–160.

    Google Scholar 

  • Kebeasy, R. M., Maamoun, M., & Albert, R. N. H. (1981). Earthquake activity and earthquake risk around the Alexandria Area in Egypt. Acta Geophysica Polonica,29, 37–48.

    Google Scholar 

  • Korrat, I. M., El Agami, N. L., Hussein, H. M., & El-Gabry, M. N. (2005). Seismotectonics of the passive continental margin of Egypt. Arabian Journal of Geoscience,41, 145–150.

    Google Scholar 

  • Maamoun, M., Megahed, A., & Allam, A. (1984). Seismicity of Egypt. HIAG Bulletin,4(B), 109–160.

    Google Scholar 

  • Martínez-Garzón, P., Ben-Zion, Y., Abolfathian, N., Kwiatek, G., & Bohnhoff, M. (2016). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth,121, 8666–8687. https://doi.org/10.1002/2016JB013493.

    Article  Google Scholar 

  • Mascle, J., Benkhelil, J., Bellaiche, G., Zitter, T., Woodside, J., & Loncke, L. (2000). The prismed II Scientific Party (including V. Gaullier), Marine geological evidences for a Levantine-Sinai plate, a missing piece of the Mediterranean puzzle. Geology,28(9), 779–782.

    Article  Google Scholar 

  • Maury, J., Cornet, F. H., & Dorbath, L. (2013). A review of methods for determining stress fields from earthquake focal mechanisms: Application to the Sierentz 1980 seismic crisis (Upper Rhine graben). Bulletin de la Société Géologique de France, 184(4–5):319–334.

    Article  Google Scholar 

  • McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., & Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International,155, 126–138.

    Article  Google Scholar 

  • Megahed, A. (2004). Seismic deformation studies on the north-eastern part of Egypt. Ph.D. thesis. Fac. of Sci., Geology Dept. Mansoura Univ.

  • Michael, A. J. (1984). Determination of stress from slip data: faults and folds. Journal of Geophysical Research,89, 11517–11526. https://doi.org/10.1029/jb089ib13p11517.

    Article  Google Scholar 

  • Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research,92, 357–368. https://doi.org/10.1029/JB092iB01p00357.

    Article  Google Scholar 

  • Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd paper). Bulletin of the Earthquake Research Institute, University of Tokyo,40, 831–853.

    Google Scholar 

  • Mohamed, E. K., Hassoup, A., Abou Elenean, K. M., OthmanAdel, A. A., & Hamed Diaa-Eldin, M. K. (2015). Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt. NRIAG Journal of Astronomy and Geophysics,4(2), 205–221.

    Article  Google Scholar 

  • Morsy, M., Hussein, H. M., Abu Elenean, K. M., & El-Hady, S. (2011). Stress field in the central and northern parts of the Gulf of Suez area, Egypt from earthquake fault plane solutions. Journal of African Earth Sciences,60, 293–302. https://doi.org/10.1016/j.jafrearsci.2011.03.006.

    Article  Google Scholar 

  • Mosconi, A., Rebora, A., Venturino, G., Bocc, P., & Khalil, M. H. (1996). Egypt-Nile Delta and North Sinai Cenozoic tectonic evolutionary model: a proposal. In Proceeding of the 13th Egypt Gen Petrol Corp Explor and Prod Conference, Cairo, Egypt, I, pp. 203–223.

  • Moustafa, A. R. (2004). Geological maps and sections of sinai margin: AAPG data pages (CD Rom).

  • Moustafa, A. R., & Abdallah, A. (1992). Transfer zones with en echelon faulting at the northern end of the Suez rift. Tectonics,11, 499–509.

    Article  Google Scholar 

  • Moustafa, A. R., El-Badrawy, R., & Gibali, H. (1998). Pervasive E–ENE oriented faults in the northern Egypt and their effect on the development and inversion of prolific sedimentary basins. In Proceedings of 14th Egyptian general petroleum corporation exploration and production conference, vol. 1, pp. 51–67.

  • Patton, T. L., Moustafa, A. R., Nelson, R. A., & Abdine, S. A. (1994). Tectonic evolution and structural setting of the Suez Rift. AAPG Memoir,59(9), 51.

    Google Scholar 

  • Reasenberg, P., & Oppenheimer, D. (1985). FPFIT, FPPLOT, and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey Open-File Report,109, 85–739.

    Google Scholar 

  • Riad, S., & Meyers, H. (1985). On the seismicity of the Middle East. In Proceedings of 14th symposium on historical seismograms and earthquakes, international association of seismology and physics of the earth’s interior (IASPEI)/UNESCO, pp. 1–22.

  • Said, R. (1962). The geology of Egypt. New York: Elsevier.

    Google Scholar 

  • Salamon, A., Hofstetter, A., Garfunkel, Z., & Ron, H. (2003). Seismotectonics of the Sinai subplate, the eastern Mediterranean region. Geophysical Journal International,155, 149–173.

    Article  Google Scholar 

  • Sawires, R., Pelaez, J. A., Ibrahim, H. A., Fath-Elbary, R. E., Henares, J., & Hamdache, M. (2016). Delineation and characterization of a new seismic source model for seismic hazard studies in Egypt. Natural Hazards,80, 1823–1864. https://doi.org/10.1007/s11069-015-2034-x.

    Article  Google Scholar 

  • Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America,58, 399–415.

    Google Scholar 

  • Sehim, A., Ismail, A., & Mahmoud, R. (1992). Proposed structural model, Khalada West Concession, Western Desert, Egypt. In EGPC eleventh exploration & production conference, Nov 1992-Cairo, pp. 79–97.

  • Selim, E. I. (2012). Subsurface structural trends of the offshore Nile Delta area, Egypt: Evidences from gravity and magnetic data. Environmental Earth Sciences,68(4), 1015–1032. https://doi.org/10.1007/s12665-012-1804-y.

    Article  Google Scholar 

  • Snoke, A. (2003). Focal Mechanism determination software (FocMec package). http://www.iris.edu/pub/programs/focmec/.

  • Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International,199(1), 69–77. https://doi.org/10.1093/gji/ggu224.

    Article  Google Scholar 

  • Vavryčuk, V. (2015). Earthquake mechanisms and stress field. In M. Beer, et al. (Eds.), Encyclopedia of earthquake engineering (pp. 728–746). Berlin: Springer.

    Chapter  Google Scholar 

  • Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. Journal of Geology,59, 118–130.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New version of the generic mapping tools released. Eos Trans., AGU, 76, 329, 1995.

  • Youssef, M. I. (1968). Structural pattern of Egypt and its interpretation. AAPG Bulletin,52(4), 601–614.

    Google Scholar 

  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map project. Journal of Geophysical Research,97, 11703–11728.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor in Chief Prof. Tomas Fischer and the anonymous reviewers for their critical reviews. The authors would like to express their gratitude to Prof. Dr. Ahmed Badawy (Department of Seismology, NRIAG) for his collaboration to improve the manuscript. The authors would like to express their appreciation to the staff members of ENSN who provided the earthquake bulletins to be used in the present study. The authors are thankful to their respective institute (NRIAG) for the continuous and effective support. Generic Mapping Tools (GMT) developed by Wessel and Smith (1998) was used for data mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif M. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Badreldin, H. Present-Day Stress Field in Egypt Based on a Comprehensive and Updated Earthquake Focal Mechanisms Catalog. Pure Appl. Geophys. 176, 4729–4760 (2019). https://doi.org/10.1007/s00024-019-02262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02262-9

Keywords

Navigation