Skip to main content
Log in

Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this work, we search for physical and chemical climatological anomalies preceding major volcanic explosive eruptions (mostly VEI—Volcanic Explosivity Index 4+) occurred from 2002 to 2017, by applying two specific algorithms, i.e. CAPRI and MEANS. The former algorithm has been already used for a multi-climatological analysis of the Amatrice-Norcia 2016–2017 earthquake preparatory phase (Piscini et al., In: Pure Appl Geophys, 174:3673–3688, 2017). Here we analyse some climatological parameters for a three-month period before each volcanic explosive eruption then we compare the behavior with the typical one of the past. The analysis is applied to an area with dimensions comparable to the volcano crater, because it is the increase of the magmatic camera activity that, in turn, can cause a temperature increase whose evidence could be detected at the surface (Slezin, In: J Volcanol Geotherm Res, 122(1–2), 7–50, 2003), while the use of a larger area would provide a greater probability of occurrence of other events (e.g., other volcano eruption, meteorological storms, etcetera). Therefore, a smaller area of study reduces the risk to get “false alarms”. In particular, we considered thermal skin temperature, (skt) and total water vapour content (tcwv) from ECMWF European centre and aerosol optical thickness (AOT), sulphur dioxide (SO2) and atmospheric dimethylsulphide (DMS) are obtained from NASA MERRA-2 Global Modeling and Assimilation data archive. The latter compound was added in the analysis to check the validity of the method, since we did not expect significant anomalies from this parameter. The models above described are used for their temporal-spatial completeness, allowing performing time series analyses and for a real time monitoring on a global scale. By simultaneous analysis, we found for almost all volcanic eruptions some anomalies in about all analyzed parameters that precede by 75 days to 20 days the explosion. These anomalies are not always simultaneous, but we find an interesting synchronicity that probably reveals a correlation among the different datasets. In addition, the Agung volcano, which has recently started an eruptive activity (25 November 2017) without reaching a VEI4+ explosion, has also been investigated. The data related to this volcano present a small number of anomalies, much lower than all attributed to the other analyzed explosive volcanoes and this is in high agreement with the low-explosive nature of the Agung volcano eruption. We find that the occurrence of thermal anomalies typically preceding stratovolcano/caldera eruptions seems to take place some days after SO2 emissions. The climatological anomalies that precede eruptions at high latitudes usually surround the volcano in a wider area outside the volcanic edifice. We verify that the number of positive anomalies is systematically greater in the year that precedes the investigated eruption with respect to a quiet year of comparison with accuracy from 91 to 100%, suggesting that the applied methods detected climatological anomalies likely related to imminent volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreae, M. O., & Raemdonck, H. (1983). Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view. Science, 221(4612), 744–747.

    Article  Google Scholar 

  • Baxter, P. J., & Gresham, A. (1997). Deaths and injuries in the eruption of Galeras Volcano, Colombia, 14 January 1993. Journal of Volcanology and Geothermal Research, 77, 325–338.

    Article  Google Scholar 

  • Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., et al. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1, 126. https://doi.org/10.1038/ngeo104.

    Article  Google Scholar 

  • Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., & Jones, P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research, 111, D12106. https://doi.org/10.1029/2005JD006548.

    Article  Google Scholar 

  • De Natale, G., Troise, C., Kilburn, C. R. J., Somma, R., & Moretti, R. (2017). Understanding volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy. Geochemistry, Geophysics, Geosystems, 18, 2004–2008. https://doi.org/10.1002/2017GC006972.

    Article  Google Scholar 

  • De Santis, A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L., Qamili, E., et al. (2015). Geospace perturbations induced by the Earth: the state of the art and future trends. Physics and Chemistry of the Earth, 85, 17–33.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. PAGEOPH, 117, 1025. https://doi.org/10.1007/BF00876083.

    Article  Google Scholar 

  • Einarsson, P. (2018). Short-term seismic precursors to icelandic eruptions 1973–2014. Frontiers in Earth Science, 6, 45. https://doi.org/10.3389/feart.2018.00045.

    Article  Google Scholar 

  • ESA/DLR. Sentinels monitor volcanic Mount Agung, 25 January 2018. ESA image id: 387375. https://earth.esa.int/web/sentinel/missions/sentinel-5p/news/-/article/sentinels-monitor-volcanic-mount-agung.

  • Farrell, J., Husen, S., & Smith, R. B. (2009). Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. Journal of Volcanology and Geothermal Research, 188(1), 260–276. https://doi.org/10.1016/j.jvolgeores.2009.08.008.

    Article  Google Scholar 

  • Fujii, T., & Nakada, S. (1999). The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan); a flow model for associated ash-cloud surges. Journal of Volcanology and Geothermal Research, 89, 159–172.

    Article  Google Scholar 

  • Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L, Randles, C. A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D.c, Sienkiewicz, M., Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), American Meteorological Society—Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

  • Global Volcanism Program, (2013). Volcanoes of the World, v. 4.6.7. Venzke, E (ed.). Smithsonian Institution. Downloaded 24 Apr 2018. https://dx.doi.org/10.5479/si.GVP.VOTW4-2013.

  • Gobiet, A., Foelsche, U., Steiner, A. K., Borsche, M., Kirchengast, G., & Wickert, J. (2005). Climatological validation of stratospheric temperatures in ECMWF operational analyses with CHAMP radio occultation data. Geophysical Research Letters, 32, L12806. https://doi.org/10.1029/2005GL022617.

    Article  Google Scholar 

  • Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Lambert, S. J. (1988). A comparison of operational global analyses from the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Meteorological Center (NMC). Tellus A, 40A, 272–284. https://doi.org/10.1111/j.1600-0870.1988.tb00347.x.

    Article  Google Scholar 

  • Lomax, A., Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophysical Journal International, 146(2), 313–331. https://doi.org/10.1046/j.0956-540x.2001.01444.x.

    Article  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., & Rasmussen, R. A. (1972). Atmospheric dimethyl sulphide and natural sulphur cycle. Nature, 237, 452–453.

    Article  Google Scholar 

  • Marchese, F., Ciampa, M., Filizzola, C., Lacava, T., Mazzeo, G., Pergola, N., et al. (2010). On the exportability of robust satellite techniques (RST) for active volcano monitoring. Remote Sensing, 2, 1575–1588.

    Article  Google Scholar 

  • Massonnet, D., Briole, P., & Arnaud, A. (2001). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375, 567–570.

    Article  Google Scholar 

  • Mastrolorenzo, G., Palladino, D. M., Pappalardo, L., & Rossano, S. (2017). Probabilistic-numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: Multi-VEI scenarios as a tool for “full-scale” risk management. PLoS One, 12(10), e0185756. https://doi.org/10.1371/journal.pone.0185756.

    Article  Google Scholar 

  • McGuire, W. J., & Kilburn, C. R. J. (1997). Forecasting volcanic events: some contemporary issues. Geologische Rundschau, 86(2), 439–445.

    Article  Google Scholar 

  • Occhipinti, G., Lognonné, P., Kherani, E. A., & Hebert, H. (2006). Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophysical Research Letters, 33, L20104. https://doi.org/10.1029/JC087iC02p01231.

    Article  Google Scholar 

  • Parrot, M., Achacheb, J., Berthelier, J. J., Blanc, E., Deschamps, E., Lefeuvre, F., et al. (1993). High-frequency seismo-electromagnetic effects. Physics of the Earth and Planetary Interiors, 77(1), 65–83. https://doi.org/10.1016/0031-9201(93)90034-7.

    Article  Google Scholar 

  • Patanè, D., Barberi, G., Cocina, O., De Gori, P., & Chiarabba, C. (2006). Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science, 313, 821–823.

    Article  Google Scholar 

  • Patanè, D., De Gori, P., Chiarabba, C., & Bonaccorso, A. (2003). Magma ascent and the pressurization of Mount Etna’s volcanic system. Science, 299, 2061–2063.

    Article  Google Scholar 

  • Pergola, N., Marchese, F., & Tramutoli, V. (2004). Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sensing of Environment, 93(3), 311–327. https://doi.org/10.1016/j.rse.2004.07.010.

    Article  Google Scholar 

  • Piscini, A., De Santis, A., Marchetti, D., & Cianchini, G. (2017). A multi-parametric climatological approach to study the 2016 Amatrice-Norcia (Central Italy) earthquake preparatory phase. Pure and Applied Geophysics, 174, 3673–3688. https://doi.org/10.1007/s00024-017-1597-8.

    Article  Google Scholar 

  • Pritchard, M. E., & Simons, M. (2004a). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5, 2. https://doi.org/10.1029/2003GC000610.

    Article  Google Scholar 

  • Pritchard, M. E., & Simons, M. (2004b). An InSAR-based survey of volcanic deformation in the southern Andes. Geophysical Research Letters, 31(15), L15610. https://doi.org/10.1029/2004GL020545.

    Article  Google Scholar 

  • Pulinets, S., & Davidenko, D. (2014). Ionospheric precursors of earthquakes and Global Electric Circuit. Advances in Space Research, 53(5), 709–723. https://doi.org/10.1016/j.asr.2013.12.035.

    Article  Google Scholar 

  • Pulinets, S., & Ouzounov, D. (2011). Lithosphere-Atmosphere- ionosphere coupling (LAIC) model-an unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4–5), 371–382.

    Article  Google Scholar 

  • Reath, K., Ramsey, M. S., Dehn, J., & Webley, P. (2016). Predicting eruptions from precursory activity using remote sensing data hybridization. Journal of Volcanology and Geothermal Research, 321, 21. https://doi.org/10.1016/j.jvolgeores.2016.04.027.

    Article  Google Scholar 

  • Rymer, H. (1994). Microgravity changes as a precursor to volcanic activity. Journal of Volcanology and Geothermal Research, 61, 311–328.

    Article  Google Scholar 

  • Rymer, H., Cassidy, J., Locke, C. A., & Sigmundsson, F. (1998). Posteruptive gravity changes from 1990 to 1996 at Krafla Volcano, Iceland. Journal of Volcanology and Geothermal Research, 87, 141–149.

    Article  Google Scholar 

  • Rymer, H., & Williams-Jones, G. (2000). Volcanic eruption prediction: magma chamber physics from gravity and deformation measurements. Geophysical Research Letters, 27(16), 2389–2392.

    Article  Google Scholar 

  • Sears, T. M., Thomas, G. E., Carboni, E., Smith, A. J. A., & Grainger, R. G. (2013). SO2 as a possible proxy for volcanic ash in aviation hazard avoidance. Journal of Geophysical Research: Atmospheres, 118, 5698–5709. https://doi.org/10.1002/jgrd.50505.

    Google Scholar 

  • Simkin, T., Siebert, L., McClelland, L., Bridge, D., Newhall, C., & Latter, J. H. (1994). Volcanoes of the World (2nd ed.). Stroudsburg: HutchinsonRoss Publishing.

    Google Scholar 

  • Slezin, Y. B. (2003). The mechanism of volcanic eruptions (a steady state approach). Journal of Volcanology and Geothermal Research, 122(1–2), 7–50. https://doi.org/10.1016/S0377-0273(02)00464-X.

    Article  Google Scholar 

  • Small, C., & Naumann, T. (2001). The global distribution of human population and recent volcanism. Environmental Hazards, 3(3–4), 93–109.

    Google Scholar 

  • Thomas, H. E., & Prata, A. J. (2011). Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallaj¨okull Volcano. Iceland. Atmos. Chem. Phys., 11, 6871–6880.

    Article  Google Scholar 

  • Wooster, M. J., & Rothery, D. A. (1997). Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series. Bulletin of Volcanology, 58(7), 566–579.

    Article  Google Scholar 

  • Yamaoka, K., Miyamachi, H., Watanabe, T., Kunitomo, T., & Michishita, T. (2014). Active monitoring at an active volcano: amplitude-distance dependence of ACROSS at Sakurajima Volcano, Japan. Earth, Planets and Space, 66(1), 1–17. https://doi.org/10.1186/1880-5981-66-32.

    Article  Google Scholar 

  • Yu, H. J., Guo, J. Y., Li, J. L., Mu, D. P., & Kong, Q. L. (2015). Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis. Geodesy and Geodynamics, 6(2), 143–150. https://doi.org/10.1016/j.geog.2015.01.006.

    Article  Google Scholar 

  • Zlotnicki, J., Li, F., & Parrot, M. (2010). Signals recorded by DEMETER satellite over active volcanoes during the period 2004 August–2007 December. Geophysical Journal International, 183(3), 1332–1347. https://doi.org/10.1111/j.1365-246x.

    Article  Google Scholar 

  • Zlotnicki, J., Li, F., & Parrot, M. (2013). Ionospheric disturbances recorded by DEMETER satellite over active volcanoes: From August 2004 to December 2010. International Journal of Geophysics, 530865, 17. https://doi.org/10.1155/2013/530865.

    Google Scholar 

Download references

Acknowledgements

This work was developed in the framework of SAFE (SwArm for Earthquake Study) and Limadou-Science Projects, funded by the European and Italian Space Agencies, respectively. The authors thank the referees for the interesting and useful comments and suggestions that permitted us to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Piscini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piscini, A., Marchetti, D. & De Santis, A. Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017. Pure Appl. Geophys. 176, 3629–3647 (2019). https://doi.org/10.1007/s00024-019-02147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02147-x

Keywords

Navigation