Skip to main content
Log in

Variability of the Nearshore Wave Climate in the Eastern Part of the Black Sea

Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The variability in nearshore wave climate of the eastern part of the Black Sea was studied based on 38 years of wave hindcast data from spectral wave modelling for the period from 1979 to 2016. Correlation analysis has revealed the spatial inhomogeneity within the region on the short timescale from a few hours to one day, with the southern part being more homogeneous than the northern one. The variability of annual mean wave heights in these two regions were compared using wavelet correlation analysis. The wave climate variability at four chosen locations subject to wave modelling was correlated with climate indices (NAO, AO, AMO, PDO and EA/WR) on the following timescales: 20–30, 10–17 and 4–7 years. Despite the fact that the selected periods of fluctuations of average annual wave heights are almost the same for the chosen locations due to changes in climatic indices, a decrease or increase in amplitudes of the same frequency (multi-annual and decennial) can occur in antiphase even within the same coast. Such behavior is probably caused by complex inhomogeneous wind conditions near the coast. Fluctuations of annual mean wave heights of southern and northern coasts correlate with teleconnection patterns in antiphase on multi-decadal periods of about 20–30 years. To conclude, the nearshore wave climate variability of the eastern part of the Black Sea is inhomogeneous and therefore it can be divided at least into three regions: northeastern, northwestern and southern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aydoğan, B. (2017). Offshore wind power atlas of the Black Sea Region. Journal of Renewable and Sustainable Energy, 9, 013305.

    Article  Google Scholar 

  • Aydoğan, B., & Ayat, B. (2018). Spatial variability of long-term trends of significant wave heights in the Black Sea. Applied Ocean Research, 79, 20–35.

    Article  Google Scholar 

  • Aydoğan, B., Ayat, B., & Yüksel, Y. (2013). Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, 57, 436–447.

    Article  Google Scholar 

  • Coastal Engineering Research Center (U.S.). (1973). Shore protection manual. Fort Belvoir, VA: U.S. Army Coastal Engineering Research Center.

    Google Scholar 

  • Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • Divinsky, B., & Kosyan, R. (2017). Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Continental Shelf Research, 136, 1–19.

    Article  Google Scholar 

  • Holthuijsen, L., Booij, N., & Herbers, T. (1989). A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coastal Engineering, 13, 23–54.

    Article  Google Scholar 

  • Lopatuhin, L. I., et al. (2006). Spravochnye Dannye po RezhimuVetra i Volneniya Baltijskogo, Severnogo, Chernogo, Azovskogo i Sredizemnogo Morej. Saint Petersburg: Rossijskij Morskoj Registr Sudohodstva. (in Russian).

    Google Scholar 

  • Masselink, G., Austin, M., Scott, T., Poate, T., & Russell, P. (2014). Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology, 226, 76–93.

    Article  Google Scholar 

  • Onea, F., & Rusu, E. (2014). Wind energy assessments along the Black Sea basin. Meteorological Applications, 21, 316–329.

    Article  Google Scholar 

  • Onea, F., & Rusu, L. (2017). A long-term assessment of the Black Sea wave climate. Sustainability, MDPI, Open Access Journal, 9(10), 1–18.

    Google Scholar 

  • Özhan, E., & Abdalla, S. (1998) Wind-wave climate of the Black Sea and the Turkish coast (NATO TU-WAVES project). Melbourne, Florida, USA. In Proceedings of 5th international workshop on wave hindcasting and forecasting (pp. 71–82).

  • Polonsky, A., Evstigneev, V., Naumova, V., & Voskresenskaya, E. (2014). Low-frequency variability of storms in the northern Black Sea and associated processes in the ocean-atmosphere system. Regional Environmental Change, 14(5), 1861–1871.

    Article  Google Scholar 

  • Saprykina, Y., & Kuznetsov, S. (2018a). Analysis of the variability of wave energy due to climate changes on the example of the Black Sea. Energies, 11, 2020. https://doi.org/10.3390/en11082020.

    Article  Google Scholar 

  • Saprykina, Y., & Kuznetsov, S. (2018b). Methods of analyzing nonstationary variability of the Black Sea wave climate. Physical Oceanography, 25(4), 343–356.

    Article  Google Scholar 

  • Vespremeanu-Stroe, A., Constantinescu, Ş., Tătui, F., & Giosan, L. (2007) Multi-decadal evolution and north atlantic oscillation influences on the dynamics of the danube delta shoreline. Journal of Coastal Research, SI 50, 157–162.

    Google Scholar 

Download references

Acknowledgements

This research was performed within the framework of theme no. 0149-2019-0005, supported partly by the Scientific and Technological Research Council of Turkey, TUBITAK and European Union under 116M061 and Era.Net Rus-Plus BS STEMA 42/2016 grants (numerical wave modelling) and Russian Foundation for Basic Research (RFBR) project no. 18-55-45026 (correlation analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Shtremel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saprykina, Y., Shtremel, M., Aydoğan, B. et al. Variability of the Nearshore Wave Climate in the Eastern Part of the Black Sea. Pure Appl. Geophys. 176, 3757–3768 (2019). https://doi.org/10.1007/s00024-019-02143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02143-1

Keywords

Navigation