Skip to main content
Log in

Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper concerns the problem of predicting the maximum expected earthquake magnitude \(\mu\) in a future time interval \(T_{\text{f}}\) given a catalog covering a time period \(T\) in the past. Different studies show the divergence of the confidence interval of the maximum possible earthquake magnitude \(m_{ \hbox{max} }\) for high levels of confidence (Salamat et al. 2017). Therefore, \(m_{ \hbox{max} }\) should be better replaced by \(\mu\) (Holschneider et al. 2011). In a previous study (Salamat et al. 2018), \(\mu\) is estimated for an instrumental earthquake catalog of Iran from 1900 onwards with a constant level of completeness \(\left( {m_{0} = 5.5} \right)\). In the current study, the Bayesian methodology developed by Zöller et al. (2014, 2015) is applied for the purpose of predicting \(\mu\) based on the catalog consisting of both historical and instrumental parts. The catalog is first subdivided into six subcatalogs corresponding to six seismotectonic zones, and each of those zone catalogs is subsequently subdivided according to changes in completeness level and magnitude uncertainty. For this, broad and small error distributions are considered for historical and instrumental earthquakes, respectively. We assume that earthquakes follow a Poisson process in time and Gutenberg–Richter law in the magnitude domain with a priori unknown \(a\) and b values which are first estimated by Bayes’ theorem and subsequently used to estimate \(\mu\). Imposing different values of \(m_{ \hbox{max} }\) for different seismotectonic zones namely Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh and Makran, the results show considerable probabilities for the occurrence of earthquakes with \(M_{w} \ge 7.5\) in short \(T_{\text{f}}\) , whereas for long \(T_{\text{f}}\), \(\mu\) is almost equal to \(m_{ \hbox{max} }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge: Cambridge University Press, Cambridge.

    Google Scholar 

  • Berberian, M. (1994). Natural hazards and the first earthquake catalogue of Iran. In International Institute of Earthquake Engineers and Seismology (Vol. 1).

  • Burkhard, M., & Grünthal, G. (2009). Seismic source zone characterization for the seismic hazard assessment project Peagasos by the epert group 2. Swiss Journal of Geoscience, 102, 149–188.

    Article  Google Scholar 

  • Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration (second paper). Bulletin of the Seismological Society of America, 46(2), 105–145.

    Google Scholar 

  • Heidarzadeh, M., Pirooz, M., Zaker, N., Yalciner, A., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering Journal, 35, 774–786.

    Article  Google Scholar 

  • Hessami, K., & Jamali, F. (2006). Explanatory notes to the map of major active faults of Iran. Journal of Seismology and Earthquake Engineering, 8(1), 1–11.

    Google Scholar 

  • Holschneider, M., Zöller, G., & Hainzl, S. (2011). Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg–Richter model. Bulletin of the Seismological Society of America, 101(4), 1649–1659.

    Article  Google Scholar 

  • IGUT. (2015). The Institute of the Iranian Geophysics, University of Tehran, Iran. http://irsc.ut.ac.ir/bulletin.php. Accessed 15 Dec 2015.

  • IIEES. (2015). International Institute of Earthquake Engineering and Seismology, Tehran, Iran. http://www.iiees.ac.ir/iiees/EQsearch/55uquake45. Accessed 15 Dec 2015.

  • ISC. (2015). International Seismological Center. EHB bulletin, Thatcham, UK. http://www.isc.ac.uk. Accessed 15 Dec 2015.

  • Jackson, J., Priestley, K., Allen, M., & Beberian, M. (2002). Active tectonics of the south Caspian basin. Geophysical Journal International, 148, 214–245.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.

    Article  Google Scholar 

  • Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911.

    Article  Google Scholar 

  • Kasahara, K. (1981). Earthquake mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kondorskaya, N. V., & Shebalin, N. V. (1977). New catalog of strong earthquakes in the U.S.S.R. area. Moscow: Nauka. (in Russian).

    Google Scholar 

  • Koppa, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., et al. (2000). Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329, 171–191.

    Article  Google Scholar 

  • Lee, W., Kanamori, H., Jennings, P., & Kisslinger, C. (2002). Earthquake and engineering seismology (pp. 269–281). New York: Part A Academic.

    Book  Google Scholar 

  • Lombardi, A. M., & Marzocchi, W. (2007). Evidence of clustering and nonstationarity in the time distribution of large worldwide earthquakes uncertainty. Journal of Geophysical Research, 112, 1271–1282.

    Article  Google Scholar 

  • Mirzaei, N., Mengtan, G., & Yuntai, C. (1998). Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal of Earthquake Prediction Research, 7, 465–495.

    Google Scholar 

  • NEIC. (2015). National Earthquake Information Center Bulletin. US Geological Survey. CO, USA. http://neic.usgs.gov/neis/epic. Accessed 15 Dec 2015.

  • Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944.

    Article  Google Scholar 

  • Pisarenko, V. F. (1991). Statistical evaluation of maximum possible earthquakes. Izvestiya Physics of the Solid Earth, 27, 757–763.

    Google Scholar 

  • Pisarenko, V. F., & Lysenko, V. B. (1997). Probability distribution of the maximal earthquake in a given time interval. Izvestiya Physics of the Solid Earth, 33(6), 438–446.

    Google Scholar 

  • Pisarenko, V., Lyubushin, A., Lysenko, V., & Golubeva, T. (1996). Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bulletin of the Seismological Society of America, 86(3), 691–700.

    Google Scholar 

  • Pisarenko, V. F., & Rodkin, M. V. (2009). The instability of the Mmax parameter and an alternative to its using. Izvestiya Physics of the Solid EARTH, 45(12), 1081.

    Article  Google Scholar 

  • Pisarenko, V. F., Sornette, A., Sornette, D., & Rodkin, M. V. (2008). New approach to the characterization of Mmax and of the tail of the distribution of earthquake magnitudes. Pure and Applied Geophysics, 165, 847–888.

    Article  Google Scholar 

  • Salamat, M., Zare, M., Holschneider, M., & Zöller, G. (2017). Calculation of confidence intervals for the maximum magnitude of earthquakes in different seismotectonic zones of Iran. Pure and Applied Geophysics, 174(3), 763–777.

    Article  Google Scholar 

  • Salamat, M., Zöller, G., Zare, M., & Amini, M. (2018). The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings. Journal of Seismology, 22(6), 1485–1498.

    Article  Google Scholar 

  • Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letter, 84(2), 233–249.

    Article  Google Scholar 

  • Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526.

    Article  Google Scholar 

  • Van Stiphout, T., Zhung, J., & Marsan, D. (2012). Seismicity declustering. In Community online resource for statistical seismicity analysis.

  • Vernant, P., Nilforoushan, F., Chéry, J., Bayer, R., Djamour, Y., Masson, F., et al. (2004). Deciphering oblique shortening of central Alborz in Iran using geodetic data. Earth and Planetary Science Letters, 223(1–2), 177–185.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. EOS, 72, 441.

    Article  Google Scholar 

  • Zöller, G., Hainzl, S., & Holschneider, M. (2010). Recurrence of large earthquakes: Bayesian inference from catalogs in the presence of magnitude uncertainties. Pure and Applied Geophysics, 167, 845–853.

    Article  Google Scholar 

  • Zöller, G., Holschneider, M., & Hainzl, S. (2013). The maximum earthquake magnitude in a time horizon: Theory and case studies. Bulletin of the Seismological Society of America, 103(2A), 860–875.

    Article  Google Scholar 

  • Zöller, G., Holschneider, M., Hainzl, S., & Zhuang, J. (2014). The largest expected earthquake magnitudes in Japan: The statistical perspective. Bulletin of the Seismological Society of America, 104(2), 769–779.

    Article  Google Scholar 

  • Zöller, G., Ullah, S., Bindi, D., Palorai, S., & Mikhailova, N. (2015). The largest expected earthquake magnitude in Central Asia: Statistical inference from an earthquake catalog with uncertain magnitude. Geological Society, London, Social Publication, 432, 432–433.

    Google Scholar 

Download references

Acknowledgments

We thank editor Adrien Oth and three anonymous reviewers for their useful comments. The paper greatly benefited from constructive comments of an anonymous reviewer who entirely helped us improve the manuscript. GZ acknowledges support from the Deutsche Forschungsgemeinschaft (SFB 1294). MS is grateful to Mehdi Zare for a valuable discussion. We also use the software GMT (Wessel and Smith 1991) to produce Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Salamat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamat, M., Zöller, G. & Amini, M. Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes. Pure Appl. Geophys. 176, 3425–3438 (2019). https://doi.org/10.1007/s00024-019-02141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02141-3

Keywords

Navigation