Skip to main content
Log in

Quantifying Seismicity Parameter Uncertainties and Their Effects on Probabilistic Seismic Hazard Analysis: A Case Study of Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Probabilistic seismic hazard analysis (PSHA) can accommodate various sources of uncertainties and it provides a rational framework for the precise portrayal of the hazard of a given region. Often, the information used in the PSHA is incomplete and uncertain; therefore, the question arises how the uncertainty of the input data affects the estimated hazard characteristics. In this study, sensitivity analysis (SA) was conducted to identify the most dominant inputs affecting the assessment of the key seismicity parameters (SPs), including the mean seismic activity rate λ, b value of Gutenberg–Richter, and the maximum possible earthquake magnitude \(m_{ \hbox{max} }\). The study was applied in five areas of Iran, for which such analyses have not been conducted in previous studies. Subsequently, Monte Carlo simulation was employed to determine the effects of the uncertain input parameters on PSHA relevant to spectral accelerations corresponding to 10% and 2% probability of exceedance at least once in 50 years. For this purpose, a unified and declustered earthquake catalogue was used for the five major seismotectonic provinces of Iran (Alborz-Azarbayejan, Zagros, Central-East Iran, Koppeh Dagh, and Makran). The results showed that the last (complete) part of the catalogue has a significant effect on the estimated value of seismic activity and the b value. In contrast, its influence is insignificant on the area-characteristic maximum possible earthquake magnitude, for which the most influential inputs are the maximum observed earthquake and its uncertainty. Furthermore, the uncertainties of the input SPs affected the seismic hazard estimates substantially and led to significant variability in the estimated ground motion characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo Univ., 43, 237–239.

    Google Scholar 

  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81(2), 195–206.

    Article  Google Scholar 

  • Akkar, S., Kale, Ö., Yakut, A., & Çeken, U. (2018). Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 16, 3439–3463.

    Article  Google Scholar 

  • Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145(2), 471–485.

    Article  Google Scholar 

  • Anderson, J. G., Wesnousky, S. G., & Stirling, M. W. (1996). Earthquake size as a function of fault slip rate. Bulletin of the Seismological Society of America, 86(3), 683–690.

    Google Scholar 

  • Ansari, A., Noorzad, A., & Zafarani, H. (2009). Clustering analysis of the seismic catalog of Iran. Computers & Geosciences, 35(3), 475–486.

    Article  Google Scholar 

  • Assatourians, K., & Atkinson, G. M. (2013). EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismological Research Letters, 84(3), 516–524.

    Article  Google Scholar 

  • Atkinson, G. M. (2012). Integrating advances in ground-motion and seismic-hazard analysis. In: Proceedings of the 15th World Conference on Earthquake Engineering.

  • Atkinson, G. M., Bommer, J. J., & Abrahamson, N. A. (2014). Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismological Research Letters, 85, 1141–1144.

    Article  Google Scholar 

  • Auder, B., & Iooss, B. (2008). Global sensitivity analysis based on entropy. Safety, reliability and risk analysis-Proceedings of the ESREL 2008 Conference, 2107–2115.

  • Bastami, M., & Kowsari, M. (2014). Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution. Structural Engineering and Mechanics, 49(3), 355–372.

    Article  Google Scholar 

  • Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T. M., Koravos, G. C., et al. (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology, 105(3), 200–210.

    Article  Google Scholar 

  • Beirlant, J., Kijko, A., Reynkens, T., et al. (2018). Estimating the maximum possible earthquake magnitude using extreme value methodology: The Groningen case. Natural Hazards. https://doi.org/10.1007/s11069-017-3162-2.

    Article  Google Scholar 

  • Berberian, M. (1976). Seismotectonic map of Iran 1: 2 500 000. NCC offset Press.

  • Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 89(1), 120–139.

    Google Scholar 

  • Bommer, J. J., Coppersmith, K. J., Coppersmith, R. T., Hanson, K. L., Mangongolo, A., Neveling, J., et al. (2015). A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthq. Spectra, 31, 661–698.

    Article  Google Scholar 

  • Bommer, J. J., & Crowley, H. (2017). The purpose and definition of the minimum magnitude limit in PSHA calculations. Seismological Research Letters, 88(4), 1097–1106.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Google Scholar 

  • Cornell, C. A. (1994). Statistical analysis of maximum magnitudes. In A. C. Johnston, K. J. Coppersmith, L. R. Kanter, & C. A. Cornell (Eds.), The earthquakes of stable continental regions (Vol. 1, pp. 5–10)., Assessment of large earthquake potential Palo Alto: Electric Power Research Institute.

    Google Scholar 

  • De Rocquigny, E., Devictor, N., & Tarantola, S. (2008). Uncertainty in industrial practice: a guide to quantitative uncertainty management. Hoboken: Wiley.

    Book  Google Scholar 

  • Douglas, J. (2018a). Calibrating the backbone approach for the development of earthquake ground motion models. Best Practice in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations: Issues and Challenges Towards Full Seismic Risk Analysis (pp. 1–11). France: Cadarache-Château.

    Google Scholar 

  • Douglas, J. (2018b). Capturing geographically-varying uncertainty in earthquake ground motion models or What we think we know may change. In: Recent advances in earthquake engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki, Greece. Springer, pp. 153–181.

  • Eggels, A. W., & Crommelin, D. T. (2018). Quantifying dependencies for sensitivity analysis with multivariate input sample data. arXiv preprint arXiv:1802.01841.

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778.

    Article  Google Scholar 

  • Feyissa, A. H., Gernaey, K. V., & Adler-Nissen, J. (2012). Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process. Journal of Food Engineering, 109(2), 281–290.

    Article  Google Scholar 

  • Field, E. H., Jackson, D. D., & Dolan, J. F. (1999). A mutually consistent seismic-hazard source model for southern California. Bulletin of the Seismological Society of America, 89(3), 559–578.

    Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  • Gustafson, P., Srinivasan, C., & Wasserman, L. (1996). Local sensitivity analysis. Bayesian statistics, 5, 197–210.

    Google Scholar 

  • Hamdache, M., Peláez, J. A., Kijko, A., & Smit, A. (2017). Energetic and spatial characterization of seismicity in the Algeria-Morocco region. Natural Hazards, 86(2), 273–293.

    Article  Google Scholar 

  • Hanks, T. C., & Bakun, W. H. (2002). A bilinear source-scaling model for M-log A observations of continental earthquakes. Bulletin of the Seismological Society of America, 92(5), 1841–1846.

    Article  Google Scholar 

  • Hintersberger, E., Scherbaum, F., & Hainzl, S. (2007). Update of likelihood-based ground-motion model selection for seismic hazard analysis in western central Europe. Bulletin of Earthquake Engineering, 5, 1–16.

    Article  Google Scholar 

  • Huoh, Y. J. (2013). Sensitivity analysis of stochastic simulators with information theory. Berkeley: University of California.

    Google Scholar 

  • Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors, 135(2–3), 173–209.

    Article  Google Scholar 

  • Kalaneh, S., & Agh-Atabai, M. (2016). Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt, SW Iran. Natural Hazards, 82(2), 933–946.

    Article  Google Scholar 

  • Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911.

    Article  Google Scholar 

  • Kazemian, J., & Hatami, M. R. (2017). Temporal variations of seismic parameters in Tehran region. Pure and Applied Geophysics, 174, 1–12.

    Article  Google Scholar 

  • Kazemi-Beydokhti, M., Abbaspour, R. A., & Mojarab, M. (2017). Spatio-temporal modeling of seismic provinces of Iran using DBSCAN algorithm. Pure and Applied Geophysics, 174(5), 1937–1952.

    Article  Google Scholar 

  • Khodaverdian, A., Zafarani, H., Rahimian, M., & Dehnamaki, V. (2016). Seismicity parameters and spatially smoothed seismicity model for Iran. Bulletin of the Seismological Society of America, 106(3), 1133–1150.

    Article  Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, m max. Pure and Applied Geophysics, 161(8), 1655–1681.

    Article  Google Scholar 

  • Kijko, A. (2012). On Bayesian procedure for maximum earthquake magnitude estimation. Research in Geophysics., 2, e7. https://doi.org/10.4081/rg.2012.e7,46-51.

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79(3), 645–654.

    Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82(1), 120–134.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287.

    Article  Google Scholar 

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106(3), 1210–1222.

    Article  Google Scholar 

  • Klügel, J. U. (2008). Seismic hazard analysis—Quo vadis? Earth-Science Reviews, 88(1), 1–32.

    Article  Google Scholar 

  • Kozachenko, L. F., & Leonenko, N. N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii, 23(2), 9–16.

    Google Scholar 

  • Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical Review E, 69(6), 066138.

    Article  Google Scholar 

  • Krzykacz-Hausmann, B. (2001). Epistemic sensitivity analysis based on the concept of entropy. International symposium on sensitivity analysis of model output, pp. 53–57.

  • Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988.

    Article  Google Scholar 

  • Lüdtke, N., Panzeri, S., Brown, M., Broomhead, D. S., Knowles, J., Montemurro, M. A., et al. (2008). Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks. Journal of the Royal Society, Interface, 5(19), 223–235.

    Article  Google Scholar 

  • Madahizadeh, R., Mostafazadeh, M., & Ansari, A. (2016). Long-term seismicity behavior of the Zagros region in Iran. Pure and Applied Geophysics, 173(8), 2637–2652.

    Article  Google Scholar 

  • McCalpin, J. P. (2009). Application of paleoseismic data to seismic hazard assessment and neotectonic research. International Geophysics, 95, 1–106.

    Google Scholar 

  • McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.

  • McGuire, R. K., & Arabasz, W. J. (1990). An introduction to probabilistic seismic hazard analysis. Geotechnical and Environmental Geophysics, 1, 333–353.

    Article  Google Scholar 

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.

    Google Scholar 

  • Mirzaei, N., Gao, M., & Chen, Y. T. (1997). Seismicity in major seismotectonic provinces of Iran. Earthquake Research in China, 11(4), 351–361.

    Google Scholar 

  • Mirzaei, N., Mengtan, G., & Yuntai, C. (1998). Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal of Earthquake Prediction Research, 7, 465–495.

    Google Scholar 

  • Mirzaei, N., Shabani, E., & Bafrouei, S. H. M. (2014). Comment on “A Unified Seismic Catalog for the Iranian Plateau (1900–2011)” by Mohammad P. Shahvar, Mehdi Zare, and Silvia Castellaro. Seismological Research Letters, 85(1), 179–183.

    Article  Google Scholar 

  • Mohammadi, H., Türker, T., & Bayrak, Y. (2016). A quantitative appraisal of earthquake hazard parameters evaluated from Bayesian approach for different regions in Iranian Plateau. Pure and Applied Geophysics, 173(6), 1971–1991.

    Article  Google Scholar 

  • Molchan, G. M., Keilis-Borok, V. I., & Vilkovich, G. V. (1970). Seismicity and principal seismic effects. Geophysical Journal International, 21(3), 323–335.

    Article  Google Scholar 

  • Molkenthin, C., Scherbaum, F., Griewank, A., Leovey, H., Kucherenko, S., & Cotton, F. (2017). Derivative-based global sensitivity analysis: upper bounding of sensitivities in seismic-hazard assessment using automatic differentiation. Bulletin of the Seismological Society of America, 107(2), 984–1004.

    Article  Google Scholar 

  • Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2015). A declustered earthquake catalog for the Iranian Plateau. Annals of Geophysics, 57(6), 1–25.

    Google Scholar 

  • Musson, R. M. W. (1999). Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation. Journal of Earthquake Engineering, 3(04), 463–474.

    Google Scholar 

  • Musson, R. M. W. (2004). Design earthquakes in the UK. Bulletin of Earthquake Engineering, 2(1), 101–112.

    Article  Google Scholar 

  • Musson, R. M. W. (2012). PSHA validated by quasi observational means. Seismological Research Letters, 83(1), 130–134.

    Article  Google Scholar 

  • Nowroozi, A. A. (1976). Seismotectonic provinces of Iran. Bulletin of the Seismological Society of America, 66(4), 1249–1276.

    Google Scholar 

  • Pisarenko, V. F., & Lyubushin, A. A. (1999). A Bayesian approach to seismic hazard estimation: maximum values of magnitudes and peak ground accelerations. Earthq. Res. in China, 45–57.

  • Porter, K. A., Beck, J. L., & Shaikhutdinov, R. V. (2002). Sensitivity of building loss estimates to major uncertain variables. Earthquake Spectra, 18(4), 719–743.

    Article  Google Scholar 

  • Raeesi, M., Zarifi, Z., Nilfouroushan, F., Boroujeni, S. A., & Tiampo, K. (2017). Quantitative analysis of seismicity in Iran. Pure and Applied Geophysics, 174(3), 793–833.

    Article  Google Scholar 

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495.

    Article  Google Scholar 

  • Robert, C. P. (2004). Monte Carlo methods. Wiley Online Library.

  • Rohmer, J., Douglas, J., Bertil, D., Monfort, D., & Sedan, O. (2014). Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments. Soil Dynamics and Earthquake Engineering, 58, 1–9.

    Article  Google Scholar 

  • Rosenblueth, E. (1986). Use of statistical data in assessing local seismicity. Earthquake Engineering and Structural Dynamics, 14(3), 325–337.

    Article  Google Scholar 

  • Rosenblueth, E., & Ordaz, M. (1987). Use of seismic data from similar regions. Earthquake Engineering and Structural Dynamics, 15(5), 619–634.

    Article  Google Scholar 

  • Sabetta, F. (2014). Seismic hazard and design earthquakes for the central archaeological area of Rome. Bulletin of Earthquake Engineering, 12, 1307–1317.

    Article  Google Scholar 

  • Salamat, M., Zare, M., Holschneider, M., & Zöller, G. (2017). Calculation of confidence intervals for the maximum magnitude of earthquakes in different seismotectonic zones of Iran. Pure and Applied Geophysics, 174(3), 763–777.

    Article  Google Scholar 

  • Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270.

    Article  Google Scholar 

  • Saltelli, A., Chan, K., Scott, E. M., et al. (2000). Sensitivity analysis (Vol. 1). Hoboken: Wiley.

    Google Scholar 

  • Scherbaum, F., Bommer, J. J., Bungum, H., Cotton, F., & Abrahamson, N. A. (2005). Composite ground motion models and logic trees: methodology, sensitivities and uncertainties. Bulletin of the Seismological Society of America, 95, 1575–1593.

    Article  Google Scholar 

  • Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letters, 84(2), 233–249.

    Article  Google Scholar 

  • Shahvar, M. P., Zaré, M., & Castellaro, S. (2014). Reply to “Comment on ‘A Unified Seismic Catalog for the Iranian Plateau (1900–2011)’by Mohammad P. Shahvar, Mehdi Zaré, and Silvia Castellaro” by Noorbakhsh Mirzaei, Elham Shabani, and Seyed Hasan Mousavi Bafrouei. Seismological Research Letters, 85(1), 184–185.

    Article  Google Scholar 

  • Shaw, B. E. (2009). Constant stress drop from small to great earthquakes in magnitude-area scaling. Bulletin of the Seismological Society of America, 99(2A), 871–875.

    Article  Google Scholar 

  • Shaw, B. E. (2013). Earthquake surface slip-length data is fit by constant stress drop and is useful for seismic hazard analysis. Bulletin of the Seismological Society of America, 103(2A), 876–893.

    Article  Google Scholar 

  • Sokolov, V., Bonjer, K.-P., & Wenzel, F. (2004). Accounting for site effect in probabilistic assessment of seismic hazard for Romania and Bucharest: A case of deep seismicity in Vrancea zone. Soil Dynamics and Earthquake Engineering, 24(12), 929–947.

    Article  Google Scholar 

  • Sokolov, V., & Wenzel, F. (2015). On the relation between point-wise and multiple-location probabilistic seismic hazard assessments. Bulletin of Earthquake Engineering, 13(5), 1281–1301.

    Article  Google Scholar 

  • Sokolov, V., Wenzel, F., & Mohindra, R. (2009). Probabilistic seismic hazard assessment for Romania and sensitivity analysis: A case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dynamics and Earthquake Engineering, 29(2), 364–381.

    Article  Google Scholar 

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N. A., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70, 59–80.

    Article  Google Scholar 

  • Stein, R. S., & Hanks, T. C. (1998). M≧ 6 earthquakes in southern California during the twentieth century: No evidence for a seismicity or moment deficit. Bulletin of the Seismological Society of America, 88(3), 635–652.

    Google Scholar 

  • Stocklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7), 1229–1258.

    Google Scholar 

  • Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 235, 147–150.

    Article  Google Scholar 

  • Talebi, M., Zare, M., Peresan, A., & Ansari, A. (2017). Long-term probabilistic forecast for M ≥ 5.0 earthquakes in Iran. Pure and Applied Geophysics, 174(4), 1561–1580.

    Article  Google Scholar 

  • Tavakoli, B. (1996). Major seismotectonic provinces of Iran. Tehran: International Institute of Earthquake Engineering and Seismology (IIEES).

    Google Scholar 

  • Tavakoli, B., & Ghafory-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annals of Geophysics, 42(6), 1013–1021.

    Google Scholar 

  • Tsapanos, T. M. (2003). Appraisal of seismic hazard parameters for the seismic regions of the east circum-Pacific belt inferred from a Bayesian approach. Natural Hazards, 30(1), 59–78.

    Article  Google Scholar 

  • Tsapanos, T. M., & Christova, C. V. (2003). Earthquake hazard parameters in Crete island and its surrounding area inferred from Bayes statistics: An integration of morphology of the seismically active structures and seismological data. Pure and Applied Geophysics, 160(8), 1517–1536.

    Article  Google Scholar 

  • Tsapanos, T. M., Lyubushin, A. A., & Pisarenko, V. F. (2001). Application of a Bayesian approach for estimation of seismic hazard parameters in some regions of the Circum-Pacific Belt. Pure and Applied Geophysics, 158(5–6), 859–875.

    Article  Google Scholar 

  • Uhrhammer, R. A. (1986). Characteristics of northern and central California seismicity. Earthquake Notes, 57(1), 21.

    Google Scholar 

  • Vermeulen, P., & Kijko, A. (2017). More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 65(4), 579–587.

    Article  Google Scholar 

  • Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America, 70(4), 1337–1346.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wheeler, R. L. (2009). Methods of M max estimation east of the Rocky Mountains. US: Geological Survey.

    Google Scholar 

  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.

    Article  Google Scholar 

  • Yadav, A. K. (2016). Long-term earthquake forecasting model for northeast India and surrounding region: Seismicity-based model. Natural Hazards, 80(1), 173–190.

    Article  Google Scholar 

  • Yadav, R. B. S., Tsapanos, T. M., Bayrak, Y., & Koravos, G. C. (2013). Probabilistic appraisal of earthquake hazard parameters deduced from a Bayesian approach in the northwest frontier of the Himalayas. Pure and Applied Geophysics, 170(3), 283–297.

    Article  Google Scholar 

  • Yazdani, A., & Kowsari, M. (2013). Bayesian estimation of seismic hazards in Iran. Scientia Iranica, 20(3), 422–430.

    Google Scholar 

  • Zolfaghari, M. R. (2015). Development of a synthetically generated earthquake catalogue towards assessment of probabilistic seismic hazard for Tehran. Natural Hazards, 76(1), 497–514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Kowsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowsari, M., Eftekhari, N., Kijko, A. et al. Quantifying Seismicity Parameter Uncertainties and Their Effects on Probabilistic Seismic Hazard Analysis: A Case Study of Iran. Pure Appl. Geophys. 176, 1487–1502 (2019). https://doi.org/10.1007/s00024-018-2049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2049-9

Keywords

Navigation