Skip to main content
Log in

Aseismic Mining Subsidence in an Abandoned Mine: Influence Factors and Consequences for Post-Mining Risk Management

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In the Lorraine area of eastern France, decades of iron-ore mining from 1850 to 1997 have left vast underground cavities beneath or in the vicinity of urban areas. Several major collapses occurred in the southern part of this iron-ore basin in the 1990s, after the mine closure and the flooding of underground mine workings. Following these large-scale collapses, the French government initiated a strategy of post-mining risk management to prevent and control risks associated with these ground failures. The high-risk zones are secured either by reducing the vulnerability while the moderate risk zones are monitored for public safety purposes by using in situ monitoring. This monitoring relies mainly on real-time microseismic systems, to detect precursors to a rapid large-scale collapse. After the progressive closing and then flooding of the northern iron basin ending in 2008, subsidence was observed in a town of the Lorraine basin in autumn of 2009. However, this local subsidence, with a low velocity of few centimeters per month, was not clearly detected by the borehole microseismic monitoring station located nearby. Only some microseismic events were recorded, which could not be unambiguously related to the beginning of the subsidence event. To better understand this lack of microseismic precursor a geophysical investigation was launched. A calibration blast experiment was carried out from a remaining old underground access in order to answer to the following questions: (1) what is the seismic wave attenuation field?; (2) what is the minimum source power that can be detected by the sensors?; (3) what is the impact of the geology, the faults corridor and the integral pillar extraction zone on the wave propagation field? The results of this study show strong anelastic attenuation of the seismic waves though the monitored overburden most likely related to the extensive fault system intersecting the study site. Strong attenuation might explain the lack of detected microseismicity during the subsidence event. In order to clarify this issue, a mobile GPS monitoring system was designed and tested to address this type of situation in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alheib, M. (2012). Mine d’or de Salsigne (Aude, Languedoc-Roussillon): Analyse préliminaire des causes de l’événement sismique du 15 novembre 2011Rep., Ineris, DRS-12-130671-09119A.

  • Balland, C. (2008). Expérimentation de calage microsismique—sites de Maxéville et NancyRep., Ineris-DRS-08-91469-11613A.

  • Balland, C., Morel, J., Armand, G., & Pettitt, W. (2009). Ultrasonic velocity survey in Callovo-Oxfordian argillaceous rock during shaft excavation. International Journal of Rock Mechanics and Mining Sciences, 46(1), 69–79.

    Article  Google Scholar 

  • Bardainne, T., & Gaucher, E. (2010). Constrained tomography of realistic velocity models in microseismic monitoring using calibration shots. Geophysical Prospecting, 58(5), 738–752. https://doi.org/10.1111/j.1365-2478.2010.00912.x.

    Article  Google Scholar 

  • Barton, N. (2007). Rock quality, seismic velocity, attenuation and anisotropy. New York: Taylor & Francis.

    Google Scholar 

  • Bennani, M., & Homand, F. (2004). Les Formations de couverture au droit des zones d’aléa d’effondrement brutalRep., Géodéris.

  • Bennani, M., Josien, J.-P., & Bigarré, P. (2003). Surveillance des risques d’effondrement dans l’après-mine, besoins, méthodes, in Après-mines 2003, edited, Nancy.

  • Bigarré, P., Bennani, M., Contrucci, I., Klein, E., Baroudi, H., Hadadou, R. et al. (2011). Microseismic monitoring strategy as a key component of post-mining risk management: review and feedback experience on the past decade, paper presented at 12th ISRM International Congress on Rock Mechanics, Harmonizing Rock Mechanics and the Environment, Beijing, China, 18–21 October 2011.

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Article  Google Scholar 

  • Cesca, S., Rohr, A., & Dahm, T. (2013). Discrimination of induced seismicity by full moment tensor inversion and decomposition. Journal of seismolog., 17, 147. https://doi.org/10.1007/s10950-012-9305-8.

    Article  Google Scholar 

  • Contrucci, I., Bennani, M., Bigarré, P., & Dominique, P. (2013). Activité microsismique et caractérisation de la détectabilité des réseaux de surveillance du bassin houiller de Gardanne, in AGAP, edited, Nancy. https://doi.org/10.13140/2.1.4100.7681.

  • Contrucci, I., Klein, E., Bigarré, P., Lizeur, A., Lomax, A., & Bennani, M. (2010). Management of post-mining large-scale ground failures: Blast swarms field experiment for calibration of permanent microseismic early-warning systems. Pure and Applied Geophysics, 167(1–2), 43–62.

    Article  Google Scholar 

  • Contrucci, I., Klein, E., Cao, N. T., Daupley, X., & Bigarre, P. (2011). Multi-parameter monitoring of a solution mining cavern collapse: First insight of precursors. Comptes Rendus Geoscience, 343(1), 1–10. https://doi.org/10.1016/j.crte.2010.10.007.

    Article  Google Scholar 

  • Couffin, S., Bigarré, P., Bennani, M., & Josien, J. P. (2003). Permanent real time microseismic monitoring of abandoned mines for public safety, paper presented at Field Measurements in Geomechanics, Oslo, Norway.

  • Dahm, T., Manthei, G., & Eisenblatter, J. (1998). Relative moment tensors of thermally induced microcracks in salt rock. Tectonophysics, 289(1–3), 61–74.

    Article  Google Scholar 

  • Deck, O. (2002). Etude des conséquences des affaissements miniers sur le bâti. Propositions pour une méthodologie d’évaluation de la vulnérabilité du bâti, 242 pp, Lorraine, Nancy.

  • Didier, C. (2007). La politique française de prévention des risques liés à l’après-mine, RÉALITÉS INDUSTRIELLES 86–97.

  • Dominique, P., Hoher, F. L. & Bendif, M. (2012). Instrumentation d’une petite crise sismique à Salsigne, Aude., paper presented at Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2012, Bordeaux.

  • GEODERIS. (2010). Expertise géotechnique de l’affaissement survenu à Angevillers en octobre 2009, Rapport d’avancementRep. GEODERIS, E2010/041DE—10LOR3500.

  • GISOS. (2007). Synthèse des travaux de recherche après-mine Fer, http://gisos.ensg.inpl-nancy.fr/fileadmin/File/Rapports_synthese/GISOS%20synth%20fer%202007_c.pdfRep.

  • Goldbach, O. (2010). What is the seismic risk of mine flooding, paper presented at CSIR 3rd Biennial Conference 2010. Science Real and Relevant, Pertoria, South Africa.

  • Homand, F., & Dagallier, G. (2004). Etude des formations de couverture des zones à risque d’effondrement brutal non écartéRep., LAEGO.

  • Ikeda, K., Ohshima, H., & Sakurai, T. (1981). The property and the seismic wave velocity of fractured zone, paper presented at Proceeding of International Symposium. on Weak Rock, Tokyo.

  • Kinscher, J. (2015). The analysis and interpretation of microseismicity induced by a collapsing solution mining cavity, thèse de doctorat, Université de Lorraine.

  • Kinscher, J., Bernard, P., Contrucci, I., Mangeney, A., Piguet, J. P., & Bigarre, P. (2015). Location of microseismic swarms induced by salt solution mining. Geophysical Journal International, 200(1), 337–362. https://doi.org/10.1093/gji/ggu396.

    Article  Google Scholar 

  • Kinscher, J., Cesca, S., Bernard, P., Contrucci, I., Mangeney, A., Piguet, J. P., et al. (2016). Resolving source mechanisms of microseismic swarms induced by solution mining. Geophysical Journal International, 206(1), 696–715. https://doi.org/10.1093/gji/ggw163.

    Article  Google Scholar 

  • Kinscher, J., Contrucci, I., Dominique, P., Klein, E. & Bigarré, P. (2017). On the variety of post-deformation phenomena in abandoned mining districts: Insights from seismic source analysis, Schatzalp Workshop on Induced Seismicity, Davos (Switzerland).

  • Knopoff, L. (1964). Department of Physics and Institute of Geophysics and Planetary Physics University of California, Los Angeles. Reviews of Geophysics, 2(4), 625–660.

    Article  Google Scholar 

  • Li, Y., Yang, T.-H., Liu, H.-L., Wang, H., Hou, X.-G., Zhang, P.-H., et al. (2016). Real-time microseismic monitoring and its characteristic analysis in working face with high-intensity mining. Journal of Applied Geophysics, 132, 152–163. https://doi.org/10.1016/j.jappgeo.2016.07.010.

    Article  Google Scholar 

  • Lomax, A., & Curtis, A. (2001). Fast, probabilistic earthquake location in 3D models using oct-tree importance sampling, European Geophysical Society.

  • Lomax, A., & Snieder, R. (1995). Identifying sets of acceptable solutions to non-linear, geophysical inverse problems which have complicated misfit functions. Nonlinear Processes in Geophysics, 2(3–4), 222–227.

    Article  Google Scholar 

  • Malovichko, D. A., Dyagilev, R. A., Shulako, D. Y., Butyrin, P. G. (2001). Sesismic monitoring of large-scale karst processes in a potash mine, Russian Academy of Sciences National Geophysical Committee—International Association of Seismology and Physics of the Earth’s Interior of the International Union of Geodesy and Geophysics, 120–125.

  • Malovichko, D. A., Dyagilev, R., Shulakov, D. Y., Butyrin, P., Glebov, S. V. (2009). Seismic monitoring of large-scale karst processes in a potash mine, in Controlling seismic hazard and sustainable development of deep mines, edited, pp. 989–1002.

  • Malovichko, D. A., Kadebskaya, O. I., Shulakov, D. Y., & Butyrin, P. G. (2010). Local seismologic observations of karst processes, Izvestiya. Physics of the Solid Earth, 46(1), 57–73. https://doi.org/10.1134/s1069351310010052.

    Article  Google Scholar 

  • Marot, M., Kinscher, J., Coccia, S., Contrucci, I., Klein, E., & Bigarré, P. (2014). Mine induced seismicity: From a passive microseismic monitoring in complex near-field underground conditions to an open & accessible database, in Fifth EAGE Passive Seismic Workshop.

  • Matrullo, E., Contrucci, I., Dominique, P., Bennani, M., Aochi, H., Kinsher, J. et al. (2015). Analysis and interpretation of induced micro-seismicity by flooding of the Gardanne Coal Basin (Provence, Southern France), 77th EAGE Conference & Exhibition 2015, Madrid, Spain.

  • Maubeuge, P.-L. (1955). Observations géologiques dans l’est du bassin de Paris: Terrains triasiques moyens-supérieurs et jurassiques inférieurs-moyens, Nancy, France, p. 1148.

  • McGarr, A., & Fletcher, J. B. (2005). Development of ground-motion prediction equations relevant to shallow mining-induced seismicity in the Trail Mountain area, Emery County, Utah. Bulletin of the Seismological Society of America, 95(1), 31–47.

    Article  Google Scholar 

  • Mendecki, A. J. (1996). Seismic monitoring in mines. Netherlands: Springer.

    Book  Google Scholar 

  • Miller, A., Richards, J. A., McCann, D. M., Browitt, C. W. A., & Jackson, P. D. (1989). Microseismic techniques for monitoring incipient hazardous collapse conditions above abandoned limestone mines. Quarterly Journal of Engineering Geology, 22(1), 1–18. https://doi.org/10.1144/gsl.qjeg.1989.022.01.01.

    Article  Google Scholar 

  • Montagne, A., Tincelin, E., Astier, J., & Varoquaux, J.-L. (1992). Les mines de fer de Lorraine, 255 pp., Paris, 56 Av. de Wagram, 75854 Cedex 17: UIMM, 1992, Paris: Impr. ADASE, Paris.

  • Oberti, G., Carabelli, E., Goffi, L., & Rossi, P. P. (1979). Study of an orthotropic rock mass: experimental techniques, comparative analysis of results, paper presented at Proc. of 4th IRSM, Montreux.

  • Ogasawara, H., Fujimori, K., Koizumi, N., Hirano, N., Fujiwara, S., Otsuka, S., Nakao, S., Nishigami, K., Taniguchi, K., Iio, Y., Nishida, R., Oike, K., & Tanaka, Y. (2002). Microseismicity induced by heavy rainfall around flooded vertical ore veins. Pure and Applied Geophysics, 159(1–3), 91–109.

    Article  Google Scholar 

  • Orlecka-Sikora, B., Lasocki, S., Lizurek, G., & Rudzinski, L. (2012). Response of seismic activity in mines to the stress changes due to mining induced strong seismic events. International Journal of Rock Mechanics and Mining Sciences, 53, 151–158. https://doi.org/10.1016/j.ijrmms.2012.05.010.

    Article  Google Scholar 

  • Picotti, S., & Carcione, J. M. (2006). Estimating seismic attenuation (Q) in the presence of random noise. Journal of Seismic Exploration, 15(2), 165–181.

    Google Scholar 

  • Sain, K., Singh, A. K., Thakur, N. K., & Khanna, R. (2009). Seismic quality factor observations for gas-hydrate-bearing sediments on the western margin of India. Marine Geophysical Researches, 30(3), 137–145. https://doi.org/10.1007/s11001-009-9073-1.

    Article  Google Scholar 

  • Schütz, H., & Konietzky, H. (2016). Evaluation of flooding induced seismicity from the mining area Schlema/Alberoda (Germany). Rock Mechanics and Rock Engineering, 49(10), 4125–4135.

    Article  Google Scholar 

  • Senfaute, G., Abdul Wahed, M., Piguet, J.-P., & Josien, J.-P. (2000). Technique d’écoute microsismique appliquée au risque d’effondrement dans les mines du bassin ferrifère lorrain. Revue Française de Géotechnique, 92, 57–62.

    Article  Google Scholar 

  • Sjogren, B., Ofsthus, A., & Sandberg, J. (1979). Seismic classification of rock mas qualities. Geophysical Prospecting, 27, 409–442.

    Article  Google Scholar 

  • Srinivasan, C., Willy, Y., & Nawani, P. C. (2009). Post-Closure seismicity in the mines of Kolar Gold fields, paper presented at RaSiM 7 (2009), Controlling seismic hazard and sustainable development of deep mines.

  • Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20(2), 219–232.

    Article  Google Scholar 

  • Tastet, J., Contrucci, I., Klein, E., Bigarré, P., & Driad-Lebeau, L. (2007). Large-scale field experiment to calibrate microseismic source parameters applied to realtime monitoring of post-mining instabilities, paper presented at 11th congress of the international society for rock mechanics, Lisbon, Portugal.

  • Thomsen, F. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.

    Article  Google Scholar 

  • Toksoz, M. N., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic-waves in dry and saturated rocks. 1. Laboratory Measurements. Geophysics, 44(4), 681–690.

    Article  Google Scholar 

  • Toksöz, M. N., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44(4), 681–690. https://doi.org/10.1190/1.1440969.

    Article  Google Scholar 

  • Trifu, C. I., & Shumila, V. (2010). Microseismic monitoring of a controlled collapse in field II at Ocnele Mari. Romania, Pure and Applied Geophysics, 167(1–2), 27–42. https://doi.org/10.1007/s00024-009-0013-4.

    Article  Google Scholar 

  • Um, J., & Thurber, C. (1987). A fast algorithme for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972–986.

    Google Scholar 

  • Urbancic, T. I., & Trifu, C.-I. (2000). Recent advances in seismic monitoring technology at Canadian mines. Journal of Applied Geophysics, 45(4), 225–237. https://doi.org/10.1016/S0926-9851(00)00030-6.

    Article  Google Scholar 

  • Zamfirescu, F., Mocuta, M., Constantinescu, T., Nita, C., & Danchiv, A. (2007a). The main causes and processes of instability evolution at Field II of Ocnele Mari—Romania, paper presented at Solution Mining Research Institute Spring Meeting, Basel, Switzerland.

  • Zamfirescu, F., Mocuta, M., Dima, R., Constantinescu, T., & Nita, C. (2007b). A technical solution for the collapse fragmentation of the Field II cavern—Ocnele Mari, Romania, paper presented at Solution Mining Research Institute Spring Meeting, Basel, Switzerland.

Download references

Acknowledgments

This work was undertaken with the financial support of the French Geological Survey (BRGM-DPSM) upon request of the Regional Direction of Environment, Land Settlement and Housing (DREAL) and the Public Interest Group for support and expert studies (GEODERIS). We thank BRGM-DPSM for making available the technical and human resources involved, without which this large-scale scientific experiment could not have taken place. The authors also thank GEODERIS for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Contrucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contrucci, I., Balland, C., Kinscher, J. et al. Aseismic Mining Subsidence in an Abandoned Mine: Influence Factors and Consequences for Post-Mining Risk Management. Pure Appl. Geophys. 176, 801–825 (2019). https://doi.org/10.1007/s00024-018-2015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2015-6

Keywords

Navigation