Skip to main content
Log in

Seismogenic Nodes (M ≥ 5.0) in Northeast Egypt and Implications for Seismic Hazard Assessment

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismogenic nodes capable of generating shallow earthquakes with M ≥ 5.0 have been identified in the northeast part of Egypt using the pattern recognition approach. The study region includes the Sinai Peninsula and the northern part of the Eastern Desert between the Nile River and the Red Sea, which comprises the new capital of Egypt and Suez Canal projects and represents a place for much future development. We apply a phenomenological approach based on pattern recognition for identifying seismogenic nodes. The methodology is based on the idea that earthquakes nucleate at nodes: specific structures forming around fault intersections. Morphostructural zoning (MZ) is applied to map nodes over the entire study region without using a priori knowledge of regional seismicity. The pattern recognition is employed to pinpoint seismogenic nodes where earthquakes with M ≥ 5.0 may occur in the future. As a result, seismogenic nodes capable of generating earthquakes with M ≥ 5.0 have been defined in the Sinai Peninsula and the northern part of the Eastern Desert. We also found characteristic geological-geophysical features that discriminate seismogenic nodes (D) from non-seismogenic ones (N). Information on the potential seismic sources represents the main issue in seismic hazard evaluation. Seismogenic nodes prone to earthquakes with M ≥ 5.0, as described in this work, may contribute to the definition of earthquake source zones in the northeast of Egypt because some of the D nodes are potential sources of seismic risk for critical facilities (e.g., Ismailia Tunnels) and large metropolitan areas (e.g., Nile Valley). This information can contribute to the revision of seismic zoning or microzoning and improve the performance of seismic hazard studies of Egypt by adding a new source of information about seismogenic nodes to the seismogenic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu Elenean, K. M. (1997). A study on the seismotectonics of Egypt in relation to the Mediterranean and Red Seas tectonics. Ph. D. thesis, Fac., of Sci., Ain Shams Univ., Cairo, Egypt.

  • Alexeevskaya, M. A., Gabrielov, A. M., Gvishiani, A. D., Gelfand, I. M., & Rantsamn, E. Y. (1977). Formal morphostructural zoning of mountain territories. Journal of Geophysics, 43, 227–233.

    Google Scholar 

  • Ambraseys, N. N. (2001). Far-field effects of Eastern Mediterranean earthquakes in Lower Egypt. Journal of Seismology, 5, 263–268.

    Article  Google Scholar 

  • Ambraseys, N. (2009). Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Badawy, A. (2005). Present-day seismicity, stress field and crustal deformation of Egypt. Journal of Seismology, 9, 267–276.

    Article  Google Scholar 

  • Badawy, A., ElGabry, M., & Girgis, M. (2010). Historical seismicity of Egypt. In: A Study for Previous Catalogues Producing Revised Weighted Catalogue the Second Arab Conference for Astronomy and Geophysics, Egypt.

  • Cisternas, A., Godefroy, P., Gvishiani, A., Gorshkov, A., Kossobokov, V., Lambert, M., et al. (1985). A dual approach to recognition of earthquake prone areas in the Western Alps. Annale Geophysicae, 3(2), 249–270.

    Google Scholar 

  • Deif, A., Abou Elenean, K., El-Hadidy, M., Tealeb, A., & Mohamed, A. (2009). Probabilistic seismic hazard maps for Sinai Peninsula. Egypt. Journal of Geophysical Engineering, 6, 288–297.

    Article  Google Scholar 

  • Deif, A., Hamed, H., Ibrahim, H. A., Abou Elenean, K., & El-Amin, E. (2011). Seismic hazard assessment in Aswan Egypt. Journal of Geophysics and Engineering, 8, 531–548.

    Article  Google Scholar 

  • EGSA, (Egyptian General Survey Authority) (1989). Topographic maps Egypt.

  • EGSA (Egyptian Geological Survey Authority), (1981). Geological and Tectonic maps of Egypt.

  • Elgamal, A. W., Amer, M., & Adalier, K. (1993). Liquefaction During the October 12, 1992, Egyptian Dahshure Earthquake. Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, June 1–4, 1993, Paper No. 14.18.

  • El-Hefnawy, M., Deif, A., El-Hemamy, S. T., & Gomaa, N. M. (2006). Probablistic assessment of earthquake hazard in Sinai in relation to the seismicity in the Eastern Mediterranean region. Bulletin of Engineering Geology and the Environment, 65, 309–319.

    Article  Google Scholar 

  • El-Sayed, A., Vaccari, V., & Panza, G. F. (2001). Deterministic seismic hazard in Egypt. Geophysical Journal International, 144, 555–567.

    Article  Google Scholar 

  • Eppelbaum, L.V., & Katz, Y.I. (2015). Eastern Mediterranean: Combined geologicalegeophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structuralsedimentation stages. Marine and Petroleum Geology 65, 198e216. http://dx.doi.org/10.1016/j.marpetgeo.2015.04.008.

  • Gelfand, I., Guberman, Sh, Izvekova, M., Keilis-Borok, V., & Rantsman, E. (1972). Criteria of high seismicity, determined by pattern recognition. Tectonophysics, 13, 415–422.

    Article  Google Scholar 

  • Gelfand, I., Guberman, Sh, Keilis-Borok, V., Knopoff, L., Press, F., Rantsman, E., et al. (1976). Pattern recognition applied to earthquake epicentres in California. Physics of the Earth and Planet Interiors, 11, 227–283.

    Article  Google Scholar 

  • Girdler, R. W., & McConnell, D. A. (1994). The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science, 264, 67–70.

    Article  Google Scholar 

  • Gorshkov, A. I., Kossobokov V. G., Rantsman E. Y., & Soloviev A. A. (2005). Recognition of earthquake-prone areas: Validity of results obtained from 1972 to 2000. In D. K.Chowdhury (Ed.), Computational seismology and geodynamics (pp. 37–44), Vol. 7, AGU, Washington DC.

  • Gorshkov, A., Hassan, H. M., & Novikova, O. (2016). Seismogenic nodes defined in northeast Egypt by the pattern recognition approach. In 35th General Assembly of the European Seismological Commission. September 2016, Trieste, Italy (http://meetingorganizer.copernicus.org/ESC2016/oral_program/22633).

  • Gorshkov, A. I., Kossobokov, V., & Soloviev, A. A. (2003). Recognition of earthquake prone areas. In V. Keilis-Bork & A. A. Soloviev (Eds.), Nonlinear dynamics of the lithosphere and earthquake prediction (pp. 235–320). Heidelberg: Springer.

    Google Scholar 

  • Gorshkov, A., Kuznetsov, I., Panza, G., & Soloviev, A. (2000). Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria. PAGEOPH, 157, 79–95.

    Article  Google Scholar 

  • Gorshkov A.I., Panza G.F., Soloviev A.A., & Aoudia A. (2002). Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily, JSEE: Spring 2002, Vol. 4, No. 1, pp. 1–24.

  • Gorshkov, A. I., Panza, G. F., Soloviev, A. A., & Aoudia, A. (2004). Identification of seismogenic nodes in the Alps and Dinarides Bolletino della Societa Geologica Italiana, 123, 3–18.

    Google Scholar 

  • Gorshkov, A. I., Panza, G. F., Soloviev, A. A., Aoudia, A., & Peresan, A. (2009). Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6.0). Terra Nova. https://doi.org/10.1111/j.1365-3121.2009.00879.x.

  • Gorshkov A. I., Soloviev A. A., Jiménez M. J., García-Fernández M., & Panza G. F. (2010). Recognition of earthquake-prone areas (M ≥ 5.0) in the Iberian Peninsula. Rendiconti Lincei—Scienze Fisiche e Naturali, 21(2), 131–162. https://doi.org/10.1007/s12210-010-0075-3.

  • Gvishiani, A., Gorshkov, A., Kossobokov, V., Cisternas, A., Philip, H., & Weber, C. (1987). Identification of seismically dangerous zones in the Pyrenees. Annales Geophysicae 5B(6), 681–690.

  • Gvishiani, A., Gorshkov, A., Rantsman, E., Cisternas, A., & Soloviev, A. (1988). Identification of earthquake-prone-areas in the regions of moderate seismicity. Nauka, Moscow, p. 175 (in Russian).

  • Gvishiani, A., & Soloviev, A. (1980). On the Concentration of the major earthquakes around the intersections of morphostructural lineaments in South America. In V. I. Keilis-Borok, A. L. Levshuin (Eds.), Methods and Algorithms for Interpretation of Seismological Data (pp. 46–50).

  • Hassan H. M., Gorshkov A. I., & Novikova O. V. (2016). Recognition of seismogenic nodes (M ≥ 5.0) in northeast Egypt. Book of abstracts of the 1st general Assembly of the African Seismological Commission, 2–5 April, Luxor-Aswan, Egypt.

  • Hassan, H.M., Panza, G. F., Romanelli, F., & ElGabry, M. N. (2017a). Insight on seismic hazard studies for Egypt. Engineering Geology, 0013-7952. http://doi.org/10.1016/j.enggeo.

  • Hassan, Hany M., Romanelli, Fabio, Panza, Giuliano F., ElGabry, Mohamed N., & Magrin, Andrea. (2017b). Update and sensitivity analysis of the neo-deterministic seismic hazard assessment for Egypt. Engineering Geology, 218, 77–89. https://doi.org/10.1016/j.enggeo.2017.01.006.

    Article  Google Scholar 

  • Hegazi, A. M., Seleem, T. A., & Aboulela, H. A. (2013). The spatial and genetic relation between seismicity and tectonic trends, the Bitter Lakes Area, North-East Egypt. Geoinformatics and Geostatistics: An Overview, 1, 2. https://doi.org/10.4172/2327-4581.1000106.

    Google Scholar 

  • Hudnut, K. W., Seeber, L., & Pacheo, J. (1989). Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophysical Research Letters, 16, 199–202.

    Article  Google Scholar 

  • Kasahara, K. (1981). Earthquake Mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • King, G. (1986). Speculations on the geometry of the initiation a termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–583.

    Article  Google Scholar 

  • Maamoun, M., Megahed, A., & Allam, A. (1984). Seismicity of Egypt (pp. 109–160). IV (B): HIAG Bull.

    Google Scholar 

  • Magrin, A., Gusev, A. A., Romanelli, F., Vaccari, F., & Panza, G. F. (2016). Broadband NDSHA computations and earthquake ground motion observations for the Italian territory. International Journal of Earthquake and Impact Engineering, 1(1–2), 131–158.

    Article  Google Scholar 

  • Mahmoud, S. M. (2003). Seismicity and GPS-derived crustal deformation in Egypt. Journal of Geodynamics, 35(3), 333–352. https://doi.org/10.1016/S0264-3707(02)00135-7.

    Article  Google Scholar 

  • McKenzie, D. P., & Morgan, W. J. (1969). Evolution of triple junctions. Nature, 224(5215), 125–133.

    Article  Google Scholar 

  • Mohamed, A. A., El-Hadidy, M., Deif, A., & Abou Elenean, K. (2012). Seismic hazard studies in Egypt. NRIAG Journal of Astronomy and Geophysics, 1, 119–140.

    Article  Google Scholar 

  • Neev, D. (1975). Tectonic Evolution of the Middle East and the Levantine Basin (Eastern Most Mediterranean). Geology, 3(12), 683–686. https://doi.org/10.1130/0091-7613(1975)3%3c683:teotme%3e2.0.co;2.

  • Panza, G. F., La Mura, C., Peresan, A., Romanelli, F., & Vaccari, F. (2012). Chapter three-seismic hazard scenarios as preventive tools for a disaster resilient society. Advances in Geophysics, 53, 93–165.

    Article  Google Scholar 

  • Panza, G. F., Romanelli, F., & Vaccari, F. (2001). Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. Advances in Geophysics, 43, 1–95. https://doi.org/10.1016/S0065-2687(01)80002-9.

    Article  Google Scholar 

  • Peresan, A., Gorshkov, A., Soloviev, A., & Panza, G. F. (2014). The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. arXiv preprint arXiv:1406.2932.

  • Rantsman E. Y. (1979). Sites of earthquakes and morphostructures of mountain countries. (Editorial Nauka, Moscow, p. 171) (in Russian).

  • RIGW (Research Institute of Groundwater). (1997). Hydro-geological map of Luxor Area. Explanatory Notes: Research Institute of Groundwater: Kalioubia, Egypt, scale, 1(100), 000.

    Google Scholar 

  • Said, R. (1990). The geology of Egypt: Rotterdam. Netherlands: Brookfield.

    Google Scholar 

  • Saleh, S., Salk, M., & Pamukçu, O. (2013). Estimating Curie point depth and heat flow map for northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data. Pure and Applied Geophysics, 170(5), 863–885.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016a). Updated probabilistic seismic hazard values for Egypt. Bulletin of the Seismological Society of America, 106, 1788–1801.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., Panzera, F., Ibrahim, H. A., & Hamdache, M. (2017). Probabilistic seismic hazard deaggregation for selected Egyptian cities. Pure and Applied Geophysics, 174, 1581–1600.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Ibrahim, H. A., Fat-Helbary, R. E., Henares, J., & Hamdache, M. (2016b). Delineation and characterization of a new seismic source model for seismic hazard studies in Egypt. Natural Hazards, 80, 1823–1864.

    Article  Google Scholar 

  • Soloviev, A. A., Gvishiani, A. D., Gorshkov, A. I., Dobrovolsky, M. N., & Novikova, O. V. (2014). Recognition of earthquake-prone areas: methodology and analysis of the results. Izvestiya, Physics of the Solid Earth, 50(2), 151–168. https://doi.org/10.1134/S1069351314020116.

    Article  Google Scholar 

  • Stein, S., & Stein, J. L. (2014). Playing against nature: integrating science and economics to mitigate natural hazards in an uncertain world. Hoboken: Wiley.

    Book  Google Scholar 

  • Sykes, L. R. (1967). Mechanism of earthquakes and nature of faulting on the Mid-oceanic Ridges. Journal of Geophysical Research, 72, 2131–2153.

    Article  Google Scholar 

  • Talwani, P. (1988). The intersection model for intraplate earthquakes. Seismological Research Letters, 59, 305–310.

    Google Scholar 

  • Wells, D.L., & Coppersmith, K.J., (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

Download references

Acknowledgements

A. Gorshkov and O. Novikova are partly funded by the Russian Foundation of Basic Research (RFBR) according to the research project 16-55-12033. Hany M. Hassan is funded by the Egyptian Ministry of Higher Education (Cultural Affairs and Missions Sector, Cairo). The authors would like to thank the Editor Dr. Benjamin Edwards and the anonymous reviewers for their useful and constructive comments and recommendations. Also, the authors want to express their gratefulness and respect to Dr. Mohamed ElGabry for all kinds of help and support. Special thanks to Jonathan Ford for revising the paper linguistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gorshkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A.I., Hassan, H.M. & Novikova, O.V. Seismogenic Nodes (M ≥ 5.0) in Northeast Egypt and Implications for Seismic Hazard Assessment. Pure Appl. Geophys. 176, 593–610 (2019). https://doi.org/10.1007/s00024-018-2012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2012-9

Keywords

Navigation