Pure and Applied Geophysics

, Volume 176, Issue 1, pp 265–277 | Cite as

Experimental Analysis of Sandstone Under Uniaxial Cyclic Loading Through Acoustic Emission Statistics

  • Deyi Jiang
  • Kainan Xie
  • Jie Chen
  • Shuilin Zhang
  • William Ngaha Tiedeu
  • Yang Xiao
  • Xiang JiangEmail author


The aim of this study is to assess the evolution of acoustic emission (AE) energy distribution and acoustic emission waiting time of sandstone under uniaxial cyclic loading. Experimental study was conducted to collect AE data for this purpose. The uniaxial cyclic loading test results were statistically analyzed to determine the change in the AE energy distribution as the number of loading cycles increases. The outcomes of this study show that the relationship between energy distributions of acoustic emission signals, P(E), and the absolute energy level can be expressed by a power law where its exponent, ε, changes as the number of cycles increases. Close to the failure stage, ε decreases sharply as the number of cycles increases in accordance with the mean field theory. Furthermore, the existence of temporal correlations was studied by the waiting time and it reveals the existence of acoustic emission signals clustering also in power law (characterized by τ). The evolutions of ε and τ identify a way to signal cyclic loading collapse for brittle material before the sudden disaster failure.


Sandstone Uniaxial cyclic loading Acoustic emission Statistics 



We are grateful for the financial support from the Fundamental Research Funds for the Central Universities (2018CDXYTM0003), National Science and Technology Major Project (2016ZX05045001-005) and National Natural Science Foundation of China (51509024).


  1. Aggelis, D. G. (2011). Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, 38, 153–157.CrossRefGoogle Scholar
  2. Bagde, M. N., & Petros, V. (2005). Fatigue properties of intact sandstone samples subjected to dynamic uniaxial loading. International Journal of Rock Mechanics and Mining Sciences, 42, 237–250.CrossRefGoogle Scholar
  3. Bagde, M. N., & Petros, V. (2009). Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. Internation Journal of Rock Mechanics and Mining Sciences, 46, 200–209.CrossRefGoogle Scholar
  4. Baró, J., Corral, Á., Illa, X., Planes, A., Salje, E. K. H., Schranz, W., et al. (2013). Statistical similarity between the compression of a porous material and earthquakes. Physical Review Letters, 110, 088702.CrossRefGoogle Scholar
  5. Baró, J., Planes, A., Salje, E. K. H., & Vives, E. (2016). Fracking and labquakes. Philosophical Magazine, 96, 3686–3696.CrossRefGoogle Scholar
  6. Bismayer, U. (2017). Early warning signs for mining accidents detecting crackling noise. American Mineralogist, 102, 3–4.CrossRefGoogle Scholar
  7. Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43.CrossRefGoogle Scholar
  8. Carpinteri, A., Lacidogna, G., & Niccolini, G. (2006). Critical behaviour in concrete structures and damage localization by acoustic emission. Key Engineering Materials, 312, 1892–1900.CrossRefGoogle Scholar
  9. Carrillo, L., Manosa, L., Ortin, J., Planes, A., & Vives, E. (1998). Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions. Physical Review Letters, 81, 1889–1892.CrossRefGoogle Scholar
  10. Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. Society for Industrial and Applied Mathematics, 51, 661–703.Google Scholar
  11. Corral, A., & Christensen, K. (2006). Comment on “earthquakes descaled: on waiting time distributions and scaling laws”. Physical Review Letters, 96, 109801.CrossRefGoogle Scholar
  12. Deschanel, S., Vanel, L., Godin, N., Vigier, G., & Ciliberto, S. (2009). Experimental study of crackling noise: conditions on power law scaling correlated with fracture precursors. Journal of Statistical Mechanics-theory And Experiment, 01, P01018.Google Scholar
  13. Dunand, C., & Moumni, Z. (2012). Experimental analysis of the fatigue of shape memory alloys through power-law statistics. International Journal of Fatigue, 36, 163–170.CrossRefGoogle Scholar
  14. Fairhurst, C. E., & Hudson, J. A. (1999). International society for rock mechanics commission on testing methods. Internation Journal of Rock Mechanics and Mining Sciences, 36, 279–289.CrossRefGoogle Scholar
  15. Fortin, J., Stanchits, S., & Dresen, G. (2006). Acoustic emission and velocities associated with the formation of compaction bands in sandstone. Journal of Geophysical Research Solid Earth, 111, B10.Google Scholar
  16. Fortin, J., Stanchits, S., Dresen, G., & Gueguen, Y. (2009). Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation. Pure and Applied Geophysics, 166, 823–841.CrossRefGoogle Scholar
  17. Jiang, X., Jiang, D., Chen, J., & Salje, E. K. H. (2016). Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents. American Mineralogist, 101, 2751–2758.CrossRefGoogle Scholar
  18. Jiang, X., Liu, H., Main, G. I., & Salje, E. K. H. (2017). Predicting mining collapse: superjerks and the appearance of record-breaking events in coal as collapse precursors. Physical Review E, 96, 023004.CrossRefGoogle Scholar
  19. Kawasaki, Y., Tomoda, Y., & Ohtsu, M. (2010). AE monitoring of corrosion process in cyclic wet–dry test. Construction and Building Materials, 24, 2353–2357.CrossRefGoogle Scholar
  20. Kun, F., Varga, I., Lennartz, S., & Main, G. I. (2013). Approach to failure in porous granular materials under compression. Physical Review E, 88, 062207.CrossRefGoogle Scholar
  21. Lebyodkin, M. A., Shashkov, I. V., Lebedkina, T. A., Mathis, K., Dobron, P., Chmelik, F. (2013). Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Physical Review E, 88,042402.Google Scholar
  22. Lockner, D. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, 883–899.CrossRefGoogle Scholar
  23. Lu, P., Wu, K., Jiao, Y., Li, J., & Liu, X. (1992). The experimental study of acoustic emission during creep of rocks. Acta Seismologica Sinica, 5, 169–176.CrossRefGoogle Scholar
  24. Mäkinen, T., Miksic, A., Ovaska, M., & Alava, J. (2015). Avalanches in Wood Compression. Physical Review Letters, 115, 055501.CrossRefGoogle Scholar
  25. Nataf, G. F., Castillo-Villa, P. O., Baró, J., Illa, X., Vives, E., Planes, A., et al. (2014). Avalanches in compressed porous SiO2-based materials. Physical Review E, 90, 022405.CrossRefGoogle Scholar
  26. Niccolini, G., Durin, G., Carpinteri, A., Lacidogna, G., & Manuello, A. (2009). Crackling noise and universality in fracture systems. Journal of Statistical Mechanics-theory and Experiment, 01, P01023.Google Scholar
  27. Noorsuhada, M. (2016). An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique. Construction and Building Materials, 112, 424–439.CrossRefGoogle Scholar
  28. Ohnaka, M. (1983). Acoustic emission during creep of brittle rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20, 121–134.CrossRefGoogle Scholar
  29. Ohno, K., & Ohtsu, M. (2010). Crack classification in concrete based on acoustic emission. Construction and Building Materials, 24, 2339–2346.CrossRefGoogle Scholar
  30. Philippidis, T. P., Nikolaidis, V. N., & Anastassopoulos, A. A. (1998). Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT and E International, 31, 329–340.CrossRefGoogle Scholar
  31. Salje, E. K. H., & Dahmen, K. A. (2014). Crackling noise in disordered materials. Annual Review of Condensed Matter Physics, 5, 233–254.CrossRefGoogle Scholar
  32. Salje, E. K. H., Dul’kin, E., & Roth, M. (2015). Acoustic emission during the ferroelectric transition Pm3 m to P4 mm in BaTiO3 and the ferroelastic transition R3 m-C2/c in Pb3 (PO4)2. Applied Physics Letters, 106, 152903.CrossRefGoogle Scholar
  33. Salje, E. K. H., Lampronti, G. I., Soto-Parra, D. E., Baró, J., Planes, A., & Vives, E. (2013). Noise of collapsing minerals: Predictability of the compressional failure in goethite mines. American Mineralogist, 98, 609–615.CrossRefGoogle Scholar
  34. Salje, E. K. H., Liu, H., Jin, L., Jiang, D., Xiao, Y., & Jiang, X. (2018). Intermittent flow under constant forcing: Acoustic emission from creep avalanches. Applied Physics Letters, 112, 054101.CrossRefGoogle Scholar
  35. Salje, E. K. H., Soto-Parra, D. E., Planes, A., Vives, E., Reineckerc, M., & Schranz, W. (2011). Failure mechanism in porous materials under compression: Crackling noise in mesoporous SiO2. Philosophical Magazine Letters, 91, 554–560.CrossRefGoogle Scholar
  36. Salje, E. K. H., Wang, X., Ding, X., & Sun, J. (2014). Simulating acoustic emission: The noise of collapsing domains. Physical Review B, 90, 064103.CrossRefGoogle Scholar
  37. Salje, E. K. H., Zhang, H., Idrissi, H., Schryvers, D., Carpenter, M., Moya, X., et al. (2009). Mechanical resonance of the austenite/martensite interface and the pinning of the martensitic microstructures by dislocations in Cu74.08 Al23.13Be2.79. Physical Review B, 80, 134114.CrossRefGoogle Scholar
  38. Sethna, J. P., Dahmen, K. A., Kartha, S., Krumhansl, J. A., Roberts, B. W., & Shore, J. D. (1993). Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. Physical Review Letters, 70, 3347–3351.CrossRefGoogle Scholar
  39. Shahidan, S., Pulin, R., Muhamad Bunnori, N., & Holford, K. M. (2013). Damage classification in reinforced concrete beam by acoustic emission signal analysis. Construction and Building Materials, 45, 78–86.CrossRefGoogle Scholar
  40. Shiotani, T. (2006). Evaluation of long-term stability for rock slope by means of acoustic emission technique. NDT&E International, 39, 217–228.CrossRefGoogle Scholar
  41. Soulioti, D., Barkoula, N. M., Paipetis, A., Matikas, T. E., Shiotani, T., & Aggelis, D. G. (2009). Acoustic emission behavior of steel fiber reinforced concrete under bending. Construction and Building Materials, 23, 3532–3536.CrossRefGoogle Scholar
  42. Stanchits, S., & Dresen, G. (2010). Advanced acoustic emission analysis of brittle and porous rock fracturing. EPJ Web of Conferences, 6, 22010.CrossRefGoogle Scholar
  43. Stanchits, S., Fortin, J., Gueguen, Y., & Dresen, G. (2009). Initiation and propagation of compaction bands in dry and wet Bentheim sandstone. Pure and Applied Geophysics, 166, 843–868.CrossRefGoogle Scholar
  44. Sun, Y., & Xiao, Y. (2017). Fractional order model for granular soils under drained cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 41, 555–577.CrossRefGoogle Scholar
  45. Tao, Z. Y., & Mo, H. H. (1990). An experimental study and analysis of the behaviour of rock under cyclic loading. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27, 51–56.CrossRefGoogle Scholar
  46. Uhl, J. T., Pathak, S., & Schorlemmer, D. (2015). Universal quake statistics: from compressed nanocrystals to earthquakes. Scientific Reports, 5, 16493.CrossRefGoogle Scholar
  47. Vinogradov, A., Orlov, D., Danyuk, A., & Estrin, Y. (2013). Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements. Acta Materialia, 61, 2044–2056.CrossRefGoogle Scholar
  48. Xiao, J. Q., Ding, D. X., & Xu, G. (2008). Waveform effect on quasi-dynamic loading condition and the mechanical properties of brittle materials. International Journal of Rock Mechanics and Mining Sciences, 45, 621–626.CrossRefGoogle Scholar
  49. Zapperi, S., Vespignani, A., & Stanley, H. E. (1997). Plasticity and avalanche behavior in microfracturing phenomena. Nature, 388, 658–660.CrossRefGoogle Scholar
  50. Zhang, B., Li, D., & Hu, W. (2015). Spectrum and energy characteristics analysis of rock acoustic emission signal. Journal of Northeastern University (Natural Science), 36S1, 185–188.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing UniversityChongqingPeople’s Republic of China
  2. 2.School of Civil EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations