Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 1, pp 133–146 | Cite as

Depth Calculation for the January 06, 2016, the September 09, 2016 and the September 03, 2017 Nuclear Tests of North Korea from Detailed Depth Phases Using Regional and Teleseismic Arrays

  • So Gu KimEmail author
  • Yefim Gitterman
  • Seoung-kyu Lee
Article
  • 105 Downloads

Abstract

North Korea has conducted six underground nuclear explosions so far. In this study, we determined source depth and characterization for the 2016J, 2016S and 2017S tests which were conducted on January 6, 2016 (2016J), September 9, 2016 (2016S) and September 3, 2017 (2017S), respectively. It has been difficult to ascertain the accurate depth of North Korean nuclear explosions due to paucity of data and information. We explore the depth calculation for the North Korean nuclear tests based on the detailed depth phases using teleseismic and regional arrays. We present the coherent spectral nulls from the average spectra of pP + P/sP + P and pPn + Pn/sPn + Pn which correlate with the depth phases showing 180° phase reversals with the P-wave arrivals. We estimated the burial depths at 2.12, 2.10, 1.98 km for the 2016J, 2016S and 2017S nuclear tests, respectively, We anticipate our absolute findings to be significant since in the past depth estimates for North Korean nuclear tests have been inconclusive and unclear owing to not only paucity of data but also trade-offs of the relative assessment based on the satellite images between the true source location and the tunnel entrance for the 2006 nuclear test used as a reference event.

Keywords

CTBTO spectral null take-off angle Fermat principle Mantapsan (Mt. Mantap) 

Notes

Acknowledgements

We wish to thank Robert Herrmannn for reviewing this manuscript and having productive discussion. We would like to thank Korea Meteorological Administration (KMA) for providing local waveform data. We also appreciate Albert Brouwer as well as the Executive Secretary of CTBTO, Lassina Zerbo and Director of International Data Centre (IDC), W. Randy Bell for their collaboration in IDC data collection for this study. One of the authors (SGK) would greatly appreciate CTBTO’s funding to participate in SnT2015 and SnT2017. We are also grateful to Director of ISC (International Seismological Centre), Dmitry Storchak for providing phase reading data for this study.

References

  1. Bakun, W. H., & Johnson, L. R. (1973). The convolution of teleseismic P waves from explosions Milrow and Cannikin. Geophysical Journal of the Royal Astronomical Society, 34, 321–342.CrossRefGoogle Scholar
  2. Bolt, B. A. (1976). Nuclear Explosions and Earthquakes: The Parted Veil (p. 309). San Francisco: W. H. Freeman and Company.Google Scholar
  3. Bonner, J., Herrmann, R. B., Harkrider, D., & Pasyanos, M. (2008). The Surface wave magnitude for the October 2006 North Korean nuclear explosion. Bulletin of the Seismological Society of America, 98(5), 2498–2506.CrossRefGoogle Scholar
  4. Bowers, D., Marshall, P. D., & Douglas, A. (2001). The level of the deterrence provided by data from the SPITTS seismometer array tp possible violation of the Comprehensive Test Ban in Novaya Zemlya Region. Geophysical Journal International, 46, 425–438.CrossRefGoogle Scholar
  5. Burdick, L. J., Wallace, T., & Lay, T. (1984). Modeling near-field and teleseismic observations from the Amchitka test site. Journal of Geophysical Research, 89(B6), 4373–4388.CrossRefGoogle Scholar
  6. Cho, C, Shin, J. S., Kim, G. (2016). Comparison of results of relative location methods and moment tensor inversion for the nuclear explosions experimented in North Korea, S31A-2722, 2016AGU Fall Meeting, San Francisco, pp. 10–12.Google Scholar
  7. Chung, T. W. (1995). A quantitative study on the crustal structure of the Korean Peninsula based on the Earthquakes from 1991 to 1994. Journal of the Korean Earth Science Society, 16(2), 152–157.Google Scholar
  8. Closmann, P. J. (1969). On the prediction of cavity radius produced by an underground nuclear explosion. Journal of Geophysical Research, 74(15), 3935–3939.CrossRefGoogle Scholar
  9. Cohen, T. J. (1970). Source-depth determination using spectral, pseudo-autocorrelation and cepstral analysis. Geophysical Journal International, 20, 223–231.CrossRefGoogle Scholar
  10. Douglas, A., Corbishley, D. J., Blamey, C., & Marshall, P. D. (1972). Estimating the firing depth of underground explosions. Nature, 237, 26–28.CrossRefGoogle Scholar
  11. Douglas, A., & Hudson, J. A. (1990). The effect on the teleseismic P of the zone of damage created by an explosion. Geophysical Journal International, 103, 111–133.CrossRefGoogle Scholar
  12. Douglas, A., Marshall, P. D., & Young, J. B. (1987). The P waves from the Amchitka Island explosions. Geophysical Journal of the Royal Astronomical Society, 90, 101–117.CrossRefGoogle Scholar
  13. Douglas, A., Richardson, L., & Hutchins, M. (1990). Surface reflections and S-to-P conversions on P seismograms. Geophysical Journal International, 100, 303–314.CrossRefGoogle Scholar
  14. Dreger, D. (2017). Updated UC Berkeley solution for the mb 6.3 (Mw 5.2) suspected DPRK nuclear test September03, 2017 03: 30:00 UTC, [Douglas Dreger, UC Berkeley]. Source-type inversion result for the DPRK nuclear test. https://ds.iris.edu/ds/nodes/dmc/specialevents/2017/09/03/2017-north-korean-nuclear-test/.
  15. Ford, S. R., Douglas, D. S., & Walter, W. R. (2009). Source analysis of the Memorial Day Explosion Kimchaek North Korea. Geophysical Research Letters, 36(21), L21304.CrossRefGoogle Scholar
  16. Frasier, C. W. (1972). Observations of pP in the short-period phases of NTS explosions recorded at Norway. Geophysical Journal of the Royal Astronomical Society, 31, 99–109.CrossRefGoogle Scholar
  17. Gitterman, Y., Kim, S. G., & Hofstetter, R. (2015). Spectral modulation effect in teleseismic P-waves from North Korean nuclear tests recorded in broad azimuthal range and possible source depth estimation. Pure and Applied Geophysics, 173(4), 1157–1174.  https://doi.org/10.1007/s00024-015-1169-8.CrossRefGoogle Scholar
  18. Herrmann, R. B. (2016). Computer programs in seismology. Current version 3.30 is dated May 8, 2016 NP330.May-08-2016.tgz), Saint Louis University, Saint Louis, MO. pp. 186.Google Scholar
  19. Heyburn, R., Neil, D., & Fox, B. (2013). Estimating earthquake source depths by combining surface wave amplitude spectra and teleseismic depth phase observations. Geophysical Journal International, 94(2), 1000–1010.CrossRefGoogle Scholar
  20. Israelsson, H. (2016). A note on the location of the North Kotran nuclear test on Jan 6, 2016, technical note 2016-01. Washington: SeismicInfra Research.Google Scholar
  21. Johnston, W. R (2005). Database of nuclear tests, United States: Part 2, 1964–1972, complied and last modified 19, June 2005.Google Scholar
  22. Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraint on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 221, 108–124.CrossRefGoogle Scholar
  23. Kim, S. G., & Bae, H. S. (2006). Investigation of post-sites using local seismic tomography in the Korean Peninsula. Korean Society of Economic and Environmental Geology, 39(2), 111–128.Google Scholar
  24. Kim, S. G. Gitterman, G. Lee, S. Vavrycuk, V., & Kim, M. (2015). Estimating depth and source characteristics of nuclear tests by the Democratic People’s Republic of Korea in 2006, 2009 and 2013 using regional and teleseismic network Science and Technology, CTBTO, SnT2015, Vienna, Austria, pp. 22–26.Google Scholar
  25. Kim, S. G., Gitterman, Y. Lee, S., & Vavrycu, V. (2016). Depth determination and source characteristics of the North Korean nuclear tests (2006, 2009, 2013 and 2016) using local and teleseismic arrays, Final Paper Number: S34A-02, AGU Fall Meeting, San Francisco, December 12–16.Google Scholar
  26. King, C. Y., Abo-Zena, A. M., & Murdock, J. N. (1974). Teleseismic source parametersof the Longshot, Milrow, and Cannikin nuclear explosions. Journal of Geophysical Research, 79(5), 712–718.CrossRefGoogle Scholar
  27. Kulhanek, O. (1971). P-wave amplitude spectra of Nevada underground nuclear explosions. Pure and Applied Geophysics, 88, 121–136.CrossRefGoogle Scholar
  28. Lay, T. (1991). The teleseismic manifestation of pP: problems and paradoxes, in exposion source phenomenology. Geophysical Monograph, 65, 109–125.Google Scholar
  29. Massé, R. P. (1981). Review of seismic source models for underground nuclear explosions. Bulletin of the Seismological Society of America, 71(4), 1249–1268.Google Scholar
  30. Montagner, J. P., & Kennett, B. L. N. (1996). How to reconcile body-wave and normal mode reference earth models? Geophysical Journal International, 125, 229–248.CrossRefGoogle Scholar
  31. Murphy, J. R. (1981). P wave coupling of underground explosions in various geologic media. In E. S. Huseby & S. D. Mykkeltveit (Eds.), Identification seismic sources (pp. 201–205). Dordrecht: Reidel Publishing Company.Google Scholar
  32. Murphy, J. R., Stevens, J. L., Kohl, B. C., & Bennett, T. J. (2013). Advanced seismic analyses of the source characteristics of the 2006 and 2009 North Korean Nuclear Tests. Bulletin of the Seismological Society of America, 103(3), 1640–1661.CrossRefGoogle Scholar
  33. Pabian, F., & Hecker, S.(2012). Contemplating a third nuclear test in North Korea, Bull. Atomic. Scientists, opinion, 6 August, 2012. http://www.thebulletin.org/web-edition/features/contemplating-third-nuclear-test-north-korea.
  34. Patton, H. J., & Pabian, F. K. (2014). Comment on “Advanced seismic analyses of the source characteristics of the 2006 and 2009 North Korean tests,” by J. R. Murphy, J/L. Stevens, B. E. Kohl. T. J. Bennett. Bulletin of the Seismological Society of America, 104(4), 2104–2110.CrossRefGoogle Scholar
  35. Patton, H. J., & Taylor, S. R. (2008). Effects of shock-induced tensile failure on mb - MS discrimination: contrast between historic nuclear explosions and the North Korean test of 9 October 2006. Geophysical Research Letters.  https://doi.org/10.1029/2008GL034211.Google Scholar
  36. Phillips, W. S., Begnaud, M. L., Rowe, C. A., Steck, L. K., Myers, S. C., Pasyanos, M. E., et al. (2007). Accounting for lateral variations of the upper mantle gradient in Pn tomography studies. Geophysical Research Letters, 34, L14312.  https://doi.org/10.1029/2007GL029338. (1 of 5–5 of 5).CrossRefGoogle Scholar
  37. Richter, C. F. (1958). Elementary seismology (p. 708). San Francisco and London: W. H. Freeman and Company.Google Scholar
  38. Rodnikov, G., Sergeyeva, N. A., Zabarinskaya, L. P., Filatova, N. I., Piip, V. B., & Rashidov, V. A. (2008). The deep structure of active continental margins of the Far East (Russia). Russian Journal of Earth Sciences, 10, ES4002.  https://doi.org/10.2205/2007es000224.CrossRefGoogle Scholar
  39. Sead, R., & Helmberger, D. V. (1988). Numerical-analytical interfacing in two dimensions with applications to modeling NTS seismograms. PAGEOPH, 128(1/2), 157–193.CrossRefGoogle Scholar
  40. Springer, D. L. (1974). Secondary sources of seismic waves from underground nuclear explosions. Bulletin of the Seismological Society of America, 64(3), 581–594.Google Scholar
  41. Stein, S., & Wiens, D. (1986). Depth determination for shallow teleseismic earthquakes: methods and results. Reviews Geophysics, 24(4), 806–832.CrossRefGoogle Scholar
  42. Tian, D., Yao, J. & Wen, L. (2018) Collapse earthquake swarm after North Korea’s 3 September 2017 nuclear test. Geophysical Research Letters, 45, 1–8.CrossRefGoogle Scholar
  43. Udias, A. (1999). Principle of seismology (p. 475). United Kingdom: Cambridge University Press.Google Scholar
  44. Van Der Hilst, R. D., Kennett, B. L. N., & Shibutani, T. (1998). Upper mantle structure beneath Australia from portable array deployments. Geodynamics, 26, 39–57.CrossRefGoogle Scholar
  45. Vavryčuk, V., & Kim, S. G. (2014). Non-isotropic radiation of the 2013 North Korean nuclear explosion. Geophysical Research Letters, 41(20), 7048–7056.  https://doi.org/10.1002/2014GL06126.CrossRefGoogle Scholar
  46. Viecelli, J. A. (1973). Topography and the Rayleigh wave generating efficiency of buried explosive sources. Journal of Geophysical Research, 78(17), 3334–3339.CrossRefGoogle Scholar
  47. Wen, L., & Long, H. (2010). High-precision location of North Korea’s 2009 nuclear test. Seismological Research Letters, 81, 26–29.CrossRefGoogle Scholar
  48. Wessel, P., & Smith, W. H. F. (1998). New, improved version of the Generic Mapping Tools released. EOS Transactions AGU, 79, 579.  https://doi.org/10.1029/98EO00426.CrossRefGoogle Scholar
  49. Zhang, M., & Wen, L. (2013). High-precision location and yield of North Korea’s 2013 nuclear test. Geophysical Research Letters, 40, 2941–2946.CrossRefGoogle Scholar
  50. Zhao, L.-F., Xie, X.-B., Wang, W.-M., Fan, N., Zhao, X., & Yao, Z.-X. (2017). The 9 September 2016 North Korean underground nuclear test. Bulletin of the Seismological Society of America, 107(6), 3044–3051.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Korea Seismological InstituteGoyangRepublic of Korea
  2. 2.Seismology DivisionGeophysical Institute of IsraelLodIsrael
  3. 3.Department of Structural Engineering, Protective Technologies R&D CenterBen-Gurion University of the NegevBeer-shebaIsrael
  4. 4.Department of PhysicsHanyang UniversitySeoulRepublic of Korea

Personalised recommendations