Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 1, pp 235–255 | Cite as

Anisotropic Crosshole+VSP Traveltime Tomography Through Triangular Cell Model with a Normalized Jacobian Matrix and Multistage Inversion Strategy

  • Lei-Yu He
  • Chao-Ying BaiEmail author
  • Di Wang
Article
  • 93 Downloads

Abstract

To overcome the difficulty in forward and inversion problem in complex geological model, including undulated topography and irregular subsurface interface, we in this paper realize a multistage triangular shortest-path method for multi-phase seismic ray tracing and combine a nonlinear inversion solver (damped minimum norm and constrained least squares problem solved by a conjugated gradient method) to simultaneously invert four elastic parameters (or four Thomsen parameters) in anisotropic media using combined direct and reflected arrival times. For trading-off between different parameter updating, we normalize the sensitivity functions (traveltimes derivatives with respect to different elastic (or Thomsen) parameter changes) to balance four updated elastic (or Thomsen) parameters in simultaneous inversion process, due to the magnitude and pattern of partial derivatives more sensitive to different phase slowness angles. In addition, in order to solve the multi-solution problems of qSV-wave inversion, a strategy of multistage inversion is proposed. For testing the efficiency and correctness of proposed inversion method, we use the picked traveltimes in synthetic seismograms as the observed traveltimes in the inversion. The results show that both inverted images by taking the picked traveltimes in synthetic seismograms as the observed data and by taking predicted traveltimes using ray tracing method as observed data have a similar imaging pictures, which verify the efficiency and correctness of the proposed inversion method. Furthermore, the inverted results by normalized kernel functions are better than that of inversion without applying the normalized kernel functions for both qP and qSV data, and the results of the multistage inversion are better than that of the simultaneous inversion without multistage inversion applied in qSV-wave inversion. In addition, both elastic and Thomsen parameter inversions for the same anisotropic model indicate that there are no big differences between the two inverted results even though the sensitivity kernels related to the Thomsen parameters have relatively large values.

Keywords

Triangular cell parameterization anisotropic media simultaneous inversion multistage inversion crosshole traveltime tomography Jacobian matrix normalization triangular shortest path method 

References

  1. Alkhalifah, T. (2002). Traveltime computation with the linearized eikonal equation for anisotropic media. Geophysical Prospecting, 50, 373–382.CrossRefGoogle Scholar
  2. Anderson, D. L., & Dziewonski, A. M. (1982). Upper mantle anisotropy: Evidence from free oscillation. Geophysical Journal of The Royal Astronomical Society, 69, 383–404.CrossRefGoogle Scholar
  3. Bai C. Y. (2004). Three-dimensional seismic kinematic inversion with application to reconstruction of the velocity structure of Rabaul volcano, Ph.D. Thesis, The University of Adelaide.Google Scholar
  4. Bai, C. Y., & Greenhalgh, S. (2005). 3-D non-linear travel-time tomography: Imaging high contrast velocity anomalies. Pure and Applied Geophysics, 162, 2029–2049.CrossRefGoogle Scholar
  5. Bai, C. Y., He, L. Y., Li, X. W., & Sun, J. Y. (2018). Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model. Journal of Seismology, 22, 559–574.CrossRefGoogle Scholar
  6. Bai, C. Y., Huang, G. J., Li, X. W., & Greenhalgh, S. (2015). 3D simultaneous traveltime inversion for velocity structure, hypocenter locations, and reflector geometry using multiple classes of arrivals. Pure and Applied Geophysics, 172, 1–20.CrossRefGoogle Scholar
  7. Bai, C. Y., Huang, G. J., Li, X. L., Greenhalgh, S., & Zhou, B. (2013). Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography. Geophysical Journal International, 195, 1068–1087.CrossRefGoogle Scholar
  8. Bai, C. Y., Li, X. L., & Tang, X. P. (2011). Seismic wavefront evolution of multiply reflected, transmitted, and converted phases in 2D/3D triangular cell model. Journal of Seismology, 15, 637–652.CrossRefGoogle Scholar
  9. Bai, C. Y., Wang, T., Yang, S. B., Li, X. W., & Huang, G. J. (2016). Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times. Journal of Seismology, 20, 475–494.CrossRefGoogle Scholar
  10. Berryman, J. G. (1979). Long-wave elastic anisotropy in transversely isotropic media. Geophysics, 44, 896–917.CrossRefGoogle Scholar
  11. Červený, V. (1972). Seismic rays and ray intensities in inhomogenous anisotropic media. Geophysical Journals of The Royal Astronomical Society, 29, 1–13.CrossRefGoogle Scholar
  12. Cerveny, V., & Firbas, P. (1984). Numerical modelling and inversion of travel-times of seismic body waves in inhomogeneous anisotropic media. Geophysical Journals of The Royal Astronomical Society, 76, 41–51.CrossRefGoogle Scholar
  13. Cerveny, V., & Jech, J. (1982). Linearized solutions of kinematic problems of seismic body waves in inhomogeneous slightly anisotropic media. Journal of Geophysics, 51, 96–104.Google Scholar
  14. Chapman, C. H., & Pratt, R. G. (1992). Traveltime tomography in anisotropic media—I theory. Geophysical Journal International, 109, 1–19.CrossRefGoogle Scholar
  15. Crampin, S. (1984). Effective anisotropic constants for wave-propagation through cracked solids. Journals of The Royal Astronomical Society, 76, 135–145.CrossRefGoogle Scholar
  16. Daley, P. F., & Hron, F. (1977). Reflection and transmission coefficients for transversely isotropic media. Bulletin of the Seismological Society of America, 67, 661–675.Google Scholar
  17. Eberhart-Philips, D., & Henderson, C. M. (2004). Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophysical Journal International, 156, 237–254.CrossRefGoogle Scholar
  18. Gajewski, D., & Psencik, I. (1987). Computation of high-frequency seismic wavefields in 3-D lateral inhomogenous, anisotropic media. Geophysical Journals of The Royal Astronomical Society, 91, 383–411.CrossRefGoogle Scholar
  19. Hanyga, A. (1982). Dynamic ray tracing in an anisotropic medium. Tectonophysics, 90, 243–251.CrossRefGoogle Scholar
  20. Helbig, K. (1981). Systematic classification of layered-induced transverse isotropy. Geophysical Prospecting, 29, 550–577.CrossRefGoogle Scholar
  21. Jech, J. (1988). Three-dimensional inverse problem for inhomogeneous transversely isotropic media. Studia Geophysica et Geodaetica, 32, 136–143.CrossRefGoogle Scholar
  22. Li, X. W., Bai, C. Y., Yue, X. P., & Greenhalgh, S. (2018). Multi-phase arrival tracking using tetrahedral cells within a 3D layered titled transversely isotropic anisotropic model involving undulating topography and irregular interfaces. Journal of Geophysics and Engineering, 15, 192–206.CrossRefGoogle Scholar
  23. McCullagh, M., & Ross, C. (1980). Delaunay triangulation of a random data set for isarithmic mapping. The Cartographic Journal, 17, 93–97.CrossRefGoogle Scholar
  24. Menke, W. (1984). Geophysical data analysis: Discrete inverse theory. New York: Academic Press.Google Scholar
  25. Pratt, R. G., & Chapman, C. H. (1992). Traveltime tomography in anisotropic media—II application. Geophysical Journal International, 109, 20–37.CrossRefGoogle Scholar
  26. Qian, J., & Symes, W. W. (2002). An adaptive finite-difference method for traveltimes and amplitudes. Geophysics, 67, 167–176.CrossRefGoogle Scholar
  27. Shearer, P. M., & Chapman, C. H. (1988). Ray tracing in anisotropic media with a linear gradient. Geophysical Journal International, 94, 575–580.CrossRefGoogle Scholar
  28. Tarantola, A., & Valette, B. (1982). Generalized non-linear Inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics, 20, 219–232.CrossRefGoogle Scholar
  29. Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51, 1954–1966.CrossRefGoogle Scholar
  30. Watanabe, T., Hirai, T., & Sassa, K. (1996). Seismic traveltime tomography in anisotropic heterogeneous media. Journal of Applied Geophysics, 35, 133–143.CrossRefGoogle Scholar
  31. Wu, H., & Lees, J. M. (1999). Cartesian parameterization of anisotropic traveltime tomography. Geophysical Journal International, 137, 64–80.CrossRefGoogle Scholar
  32. Yang, S. B., Bai, C. Y., & He, L. Y. (2016). Comparison of seismic wavefield simulation between the curvilinear-grid finite difference method and ray method in undulated layered medium. Chinese Journal of Acta Seismologica Sinica (in Chinese), 38(6), 854–868.Google Scholar
  33. Zhang, W., Zhang, Z., & Chen, X. (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a couocated-grid finite-difference method on curvilinear grids. Geophysical Journal International, 190, 358–378.CrossRefGoogle Scholar
  34. Zheng, X. (2004). Inversion for elastic parameters in a weakly anisotropic medium. Geophysical Journal International, 159, 1077–1089.CrossRefGoogle Scholar
  35. Zhou, B., & Greenhalgh, S. A. (2005a). ‘Shortest path’ ray tracing for the most general anisotropic 2D/3D anisotropic media. Journal of Geophysics and Engineering, 2, 54–63.CrossRefGoogle Scholar
  36. Zhou, B., & Greenhalgh, S. A. (2005b). Analytic expressions for the velocity sensitivity to the elastic moduli for the most general anisotropic media. Geophysical Prospecting, 53, 619–641.CrossRefGoogle Scholar
  37. Zhou, B., & Greenhalgh, S. A. (2008). Nonlinear traveltime inversion for 3D seismic tomography in strongly anisotropic media. Geophysical Journal International, 172, 383–394.CrossRefGoogle Scholar
  38. Zhou, B., Greenhalgh, S. A., & Green, A. (2008). Nonlinear traveltime inversion scheme for crosshole seismic tomography in titled transversely isotropic media. Geophysics, 73, D17–D33.CrossRefGoogle Scholar
  39. Zhou, B., Greenhalgh, S., & Sinadinovski, C. (1992). Iterative algorithm for the damped minimum norm, least-squares and constrained problem in seismic tomography. Exploration Geophysics, 23, 497–505.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Geophysics, School of Geology Engineering and GeomaticsChang’an UniversityXi’anChina
  2. 2.Institute of Computational GeophysicsChang’an UniversityXi’anChina

Personalised recommendations