Skip to main content
Log in

Correct Boundary Conditions for the High-Resolution Model of Nonlinear Acoustic-Gravity Waves Forced by Atmospheric Pressure Variations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Currently, an international network of operating high-resolution microbarographs was established to record wave-induced pressure variations at the Earth’s surface. Based on these measurements, simulations are performed to analyze the characteristics of waves corresponding to the observed variations of atmospheric pressure. Such a mathematical problem involves a set of primitive nonlinear hydrodynamic equations considering lower boundary conditions in the form of pressure variations at the Earth’s surface. Selection of upward propagating acoustic-gravity waves (AGWs) generated or reflected at the Earth’s surface requires the Neumann boundary conditions involving the vertical gradients of vertical velocity at the lower boundary. To analyze the correctness of the mathematical problem, linearized equations are used for small-surface wave amplitudes excited near the ground. Using the relation for wave energy, it is proven that the solution of the boundary problem based on the nondissipative approximation is uniquely determined by the variable pressure field at the Earth’s surface. The respective dissipative problem has also a unique solution with the appropriate choice of lower boundary conditions for temperature and velocity components. To test the numerical algorithm, solutions of the linearized equations for AGW modes are used. Developed boundary conditions are implemented into the model describing acoustic-gravity wave propagation from the surface atmospheric pressure source. Atmospheric waves propagating from the observed surface pressure variations to the upper atmosphere are simulated using the obtained algorithms and the computer codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, M., May, P., & Beres, J. (2004). Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. Journal of Geophysical Research, 109, D20S04. (1–11).

    Article  Google Scholar 

  • Andreassen, O., Hvidsten, O., Fritts, D., & Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave, Part 1 Initial instability evolution. Journal of Fluid Mechanics, 367, 27–46.

    Article  Google Scholar 

  • AtmoSym: A multi-scale atmosphere model from the Earth’s surface up to 500 km. http://atmos.kantiana.ru. 2016. Accessed 10 Apr 2017.

  • Babkovskaia, N., Haugen, N., & Brandenburg, A. (2011). A high-order public domain code for direct numerical simulations of turbulent combustion. Journal of Computational Physics, 230, 1–12.

    Article  Google Scholar 

  • Baker, D., & Schubert, G. (2000). Convectively generated internal gravity waves in the lower atmosphere of Venus, Part II mean wind shear and wave–mean flow interaction. Journal of the Atmospheric Sciences, 57, 200–215.

    Article  Google Scholar 

  • Balachandran, N. K. (1980). Gravity waves from thunderstorms. Monthly Weather Review, 108, 804–816.

    Article  Google Scholar 

  • Banks, P. M., & Kockarts, G. (1973). Aeronomy, Part B. New York: Elsevier.

    Google Scholar 

  • Beer, T. (1974). Atmospheric waves. London: Adam Hilder.

    Google Scholar 

  • Blanc, E., Farges, T., Le Pichon, A., & Heinrich, P. (2014). Ten year observations of gravity waves from thunderstorms in western Africa. Journal of Geophysical Research: Atmospheres, 119, 6409–6418. https://doi.org/10.1002/2013JD020499.

    Article  Google Scholar 

  • Brekhovskikh, L., & Godin, O. (1990). Acoustics of layered media. Berlin: Springer.

    Book  Google Scholar 

  • Courant, R., & Hilbert, D. (1962). Methods of mathematical physics. 2. Partial differential equations. Singapore: Wiley-VCH GmbH & Co.

    Google Scholar 

  • Dalin, P., Gavrilov, N., Pertsev, N., Perminov, V., Pogoreltsev, A., Shevchuk, N., et al. (2016). A case study of long gravity wave crests in noctilucent clouds and their origin in the upper tropospheric jet stream. Journal of Geophysical Research: Atmospheres, 121, 1402–14116. https://doi.org/10.1002/2016jd025422.

    Article  Google Scholar 

  • Fovell, R., Durran, D., & Holton, J. R. (1992a). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 47, 1042.

    Google Scholar 

  • Fovell, R., Durran, D., & Holton, J. R. (1992b). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 47, 1427–1442.

    Article  Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41, 1003. https://doi.org/10.1029/2001RG000106.

    Article  Google Scholar 

  • Fritts, D. C., & Garten, J. F. (1996). Wave breaking and transition to turbulence in stratified shear flows. Journal of the Atmospheric Sciences, 53, 1057–1085.

    Article  Google Scholar 

  • Fritts, D. C., Vadas, S. L., Wan, K., & Werne, J. A. (2006). Mean and variable forcing of the middle atmosphere by gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 247–265.

    Article  Google Scholar 

  • Gavrilov, N. M. (2013). Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations. Atmospheric Chemistry and Physics, 13, 12107–12116. https://doi.org/10.5194/acp-13-12107-2013.

    Article  Google Scholar 

  • Gavrilov, N. M. & Fukao, S. (1999). A comparison of seasonal variations of gravity wave intensity observed by the MU radar with a theoretical model. Journal of the Atmospheric Sciences, 56, 3485–3494. https://doi.org/10.1175/1520-0469(1999)056<3485:acosvo>2.0.co;2.

    Article  Google Scholar 

  • Gavrilov, N. M., & Kshevetskii, S. P. (2013). Numerical modeling of propagation of breaking nonlinear acoustic-gravity waves from the lower to the upper atmosphere. Advances in Space Research, 51, 1168–1174. https://doi.org/10.1016/j.asr.2012.10.023.

    Article  Google Scholar 

  • Gavrilov, N. M., & Kshevetskii, S. P. (2014a). Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere. Izvestiya, Atmospheric and Oceanic Physics, 50, 66–72. https://doi.org/10.1134/S0001433813050046.

    Article  Google Scholar 

  • Gavrilov, N. M., & Kshevetskii, S. P. (2014b). Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere. Earth Planets Space, 66, 88. https://doi.org/10.1186/1880-5981-66-88.

    Article  Google Scholar 

  • Gavrilov, N. M., & Kshevetskii, S. P. (2015). Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere. Advances in Space Research. https://doi.org/10.1016/j.asr.2015.01.033.

    Article  Google Scholar 

  • Gavrilov, N. M., & Yudin, V. A. (1992). Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere. Journal of Geophysical Research, 97, 7619–7624. https://doi.org/10.1029/92jd00185.

    Article  Google Scholar 

  • Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere. Amsterdam: Elsevier.

    Google Scholar 

  • Janjic, Z. I. (2002). A nonhydrostatic model based on new approach. Meteorology and Atmospheric Physics, 82(1), 271–285.

    Google Scholar 

  • Janjic, Z. I. (2006). The WRF NMM core. Overview of basic principles (presented by T. Black). NCEP. http://www.dtcenter.org/wrf-nmm/users/docs. Accessed 10 Jun 2017.

  • Jonson, R. H., & Young, G. S. (1983). Heat and moisture budgets of tropical mesoscale anvil clouds. Journal of the Atmospheric Sciences, 80, 2138–2147.

    Article  Google Scholar 

  • Karpov, I. V., & Kshevetskii, S. P. (2014). Formation of large-scale disturbances in the upper atmosphere caused by acoustic-gravity wave sources on the Earth’s surface. Geomagnetism and Aeronomy, 54(4), 553–562. https://doi.org/10.1134/S0016793214040173.

    Article  Google Scholar 

  • Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A., & Randall, D. A. (2009). Large-eddy simulation of maritime deep tropical convection. Journal of Advances in Modeling Earth Systems, 1(15), 13.

    Google Scholar 

  • Kherani, E. A., Lognonne, P., Hebert, H., Rolland, L., Astafyeva, E., Occhipinti, G., et al. (2012). Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic-gravity waves. Geophysical Journal International, 191, 1049–1066. https://doi.org/10.1111/j.1365-246X.2012.05617.x.

    Article  Google Scholar 

  • Kshevetskii, S. P. (2001). Modelling of propagation of internal gravity waves in gases. Computational Mathematics and Mathematical Physics, 41, 295–310.

    Google Scholar 

  • Kshevetskii, S. P. (2002). Internal gravity waves in non-exponentially density-stratified fluids. Computational Mathematics and Mathematical Physics, 42(10), 1510–1521.

    Google Scholar 

  • Kshevetskii, S. P., & Kulichkov, S. N. (2015). Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution. Atmospheric and Oceanic Physics, 51(1), 42–48. https://doi.org/10.1134/S0001433815010065.

    Article  Google Scholar 

  • Lax, P. D. (1957). Hyperbolic systems of conservation laws. Communications on Pure and Applied Mathematics, 10, 537–566.

    Article  Google Scholar 

  • Lax, P. D., & Wendroff, B. (1960). Hyperbolic systems of conservation laws. Communications on Pure and Applied Mathematics, 13, 217–237.

    Article  Google Scholar 

  • Leble, S., & Perelomova, A. (2013). Problem of proper decomposition and initialization of acoustic and entropy modes in a gas affected by the mass force. Applied Mathematical Modelling, 37, 629–635.

    Article  Google Scholar 

  • Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., et al. (2010). Thermosphere extension of the whole atmosphere community climate model. Journal of Geophysical Research, 115, A12302. https://doi.org/10.1029/2010JA015586.

    Article  Google Scholar 

  • Liu, X., Xu, J., Liu, H.-L., & Ma, R. (2008). Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. Journal of Geophysical Research, 113, D08112. https://doi.org/10.1029/2007JD009136.

    Article  Google Scholar 

  • Matsumura, M., Saito, A., Iyemori, T., Shinagawa, H., Tsugawa, T., Otsuka, Y., Nishioka, M., & Chen, C. H. (2011). Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63(7), 885–889.

    Article  Google Scholar 

  • Medvedev, A. S., & Gavrilov, N. M. (1995). The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere. Journal of Atmospheric and Terrestrial Physics, 57, 1221–1231.

    Article  Google Scholar 

  • Miller, D. V. (1999). Thunderstorm induced gravity waves as a potential hazard to commercial aircraft. American Meteorological Society 79th Annual conference, Windham Anatole Hotel, Dallas, TX, January 10–15. Dallas: American Meteorological Society.

  • Pedloski, J. (2006). Geophysical fluid dynamics. Berlin: Springer.

    Google Scholar 

  • Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. Journal of Geophysical Research. https://doi.org/10.1029/2002JA009430.

    Article  Google Scholar 

  • Pielke, R. A., Cotton, W. R., Walko, L. R., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A comprehensive meteorological modeling system—RAMS. Meteorology and Atmospheric Physics, 49(1–4), 69–91.

    Article  Google Scholar 

  • Pierce, A. D., & Coroniti, S. C. (1966). A mechanism for the generation of acoustic-gravity waves during thunder-storm formation. Nature, 210, 1209–1210. https://doi.org/10.1038/2101209a0.

    Article  Google Scholar 

  • Plougonven, R., & Snyder, Ch. (2007). Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. Journal of the Atmospheric Sciences, 64, 2502–2520.

    Article  Google Scholar 

  • Plougonven, R., & Zhang, F. (2014). Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics. https://doi.org/10.1002/2012RG000419.

    Article  Google Scholar 

  • Sao Sabbas, F. T., Rampinelli, V. T., & Santiago, J. (2009). Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Annales Geophysics, 27, 1279–1293.

    Article  Google Scholar 

  • Shinagawa, H., Iyemori, T., Saito, S., & Maruyama, T. (2007). A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004. Earth Planets Space, 59, 1015–1026.

    Article  Google Scholar 

  • Snively, J. B., & Pasko, V. B. (2003). Breaking of thunderstorm generated gravity waves as a source of short period ducted waves at mesopause altitudes. Geophysical Research Letters, 30(24), 2254. https://doi.org/10.1029/2003GL018436.

    Article  Google Scholar 

  • Yu, Y., Hickey, M. P., & Liu, Y. (2009). A numerical model characterizing internal gravity wave propagation into the upper atmosphere. Advances in Space Research, 44, 836–846. https://doi.org/10.1016/j.asr.2009.05.014.

    Article  Google Scholar 

Download references

Acknowledgements

Numerical simulations of the project were supported by the Russian Basic Research Foundation (Grant 17-05-00574) and the microbarograph surface pressure measurements by the Russian Scientific Foundation (Grant 14-47-00049). N. Gavrilov and S. Kshevetskii formulated the problem. Yu. Kurdyaeva and S. Kshevetskii proved the main theorems. S. Kshevetskii and N. Gavrilov developed the model for simulations. Yu. Kurdyaeva performed simulations. S. Kulichkov obtained the experimental data of the pressure variations with high-sensitive microbarographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kshevetskii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyaeva, Y.A., Kshevetskii, S.P., Gavrilov, N.M. et al. Correct Boundary Conditions for the High-Resolution Model of Nonlinear Acoustic-Gravity Waves Forced by Atmospheric Pressure Variations. Pure Appl. Geophys. 175, 3639–3652 (2018). https://doi.org/10.1007/s00024-018-1906-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1906-x

Keywords

Navigation