Gravity Tides Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis

  • Hongjuan Yu
  • Jinyun Guo
  • Qiaoli Kong
  • Xiaodong Chen
Article
  • 6 Downloads

Abstract

The static observation data from a relative gravimeter contain noise and signals such as gravity tides. This paper focuses on the extraction of the gravity tides from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity tides time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity tides derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity tides estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity tides from relative gravimeter data compared to that estimated with ICA.

Keywords

Gravity tides relative gravimeter data CG-5 gravimeter empirical mode decomposition independent component analysis EMD-ICA 

Notes

Acknowledgements

The authors are grateful to the editors and anonymous reviewers for their helpful comments, which led a significant improvement in this paper. This study is partially supported by the National Natural Science Foundation of China (Grant No. 41774001, 41374009 & 41574072), the Special Project of Basic Science and Technology of China (Grant No. 2015FY310200), the Shandong Natural Science Foundation of China (Grant No. ZR2013DM009), and the SDUST Research Fund (Grant No. 2014TDJH101).

References

  1. Amari, S. I., Chen, T. P., & Cichocki, A. (1997). Stability analysis of learning algorithms for blind source separation. Neural Networks, 10(8), 1345–1351.  https://doi.org/10.1016/S0893-6080(97)00039-7.CrossRefGoogle Scholar
  2. An, F. P., Lin, D. C., Zhou, X. W., & Sun, Z. H. (2015). Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect. International Journal of Antennas and Propagation, 2015(2015), 1–12.  https://doi.org/10.1155/2015/769478.CrossRefGoogle Scholar
  3. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.  https://doi.org/10.1162/neco.1995.7.6.1129.CrossRefGoogle Scholar
  4. Bermejo, S. (2007). Finite sample effects of the fast ICA algorithm. Neurocomputing, 71(1), 392–399.  https://doi.org/10.1016/j.neucom.2006.09.015.CrossRefGoogle Scholar
  5. Bos, M.S., & Scherneck, H. G. (2011). http://holt.oso.chalmers.se/loading/.
  6. Cai, J., & Chen, Q. (2016). De-noising for NMR oil well logging signals based on empirical mode decomposition and independent component analysis. Arabian Journal of Geosciences, 9(1), 1–11.  https://doi.org/10.1007/s12517-015-2175-y.CrossRefGoogle Scholar
  7. Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics. Geophysical Journal International, 33(3), 253–264.  https://doi.org/10.1111/j.1365-246X.1973.tb03420.x.CrossRefGoogle Scholar
  8. Cartwright, D. E., & Tayler, R. J. (1971). New computations of the tide-generating potential. Geophysical Journal International, 23(1), 45–73.  https://doi.org/10.1111/j.1365-246X.1971.tb01803.x.CrossRefGoogle Scholar
  9. Cheung, Y. M., & Lei, X. (2001). Independent component ordering in ICA time series analysis. Neurocomputing, 41(1), 145–152.CrossRefGoogle Scholar
  10. Crescentini, L., Amoruso, A., & Scarpa, R. (1999). Constraints on slow earthquake dynamics from a swarm in central Italy. Science, 286(5447), 2132–2134.  https://doi.org/10.1126/science.286.5447.2132.CrossRefGoogle Scholar
  11. Davies, M. E., & James, C. J. (2007). Source separation using single channel ICA. Signal Process, 87(8), 1819–1832.  https://doi.org/10.1016/j.sigpro.2007.01.011.CrossRefGoogle Scholar
  12. Ducarme, B., & Sun, H. P. (2001). Tidal gravity results from GGP network in connection with tidal loading and earth response. Journal of the Geodetic Society of Japan, 47(1), 308–315.  https://doi.org/10.11366/sokuchi1954.47.308.Google Scholar
  13. Forootan, E., & Kusche, J. (2012). Separation of global time-variable gravity signals into maximally independent components. Journal of Geodesy, 86(7), 477–497.  https://doi.org/10.1007/s00190-011-0532-5.CrossRefGoogle Scholar
  14. Forootan, E., & Kusche, J. (2013). Separation of deterministic signals, using independent component analysis (ICA). Studia Geophysica et Geodaetica, 57(1), 17–26.  https://doi.org/10.1007/s11200-012-0718-1.CrossRefGoogle Scholar
  15. Guo, J., Mu, D., Liu, X., Yan, H. M., & Dai, H. L. (2014). Equivalent water height extracted from GRACE gravity field model with robust independent component analysis. Acta Geophysica, 62(4), 953–972.  https://doi.org/10.2478/s11600-014-0210-0.CrossRefGoogle Scholar
  16. Haas, R. (2001). Tidal effects and space geodetic techniques. Journal of the Geodetic Society of Japan, 47(1), 161–168.  https://doi.org/10.11366/sokuchi1954.47.161.Google Scholar
  17. Hartmann, T., & Wenzel, H. G. (1995). The HW95 tidal potential catalogue. Geophysical Research Letters, 22(24), 3553–3556.  https://doi.org/10.1029/95GL03324.CrossRefGoogle Scholar
  18. Huang, N. E., Shen, Z., Long, S. R., Wu, M., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A, 454(1971), 903–995.  https://doi.org/10.1098/rspa.1998.0193.CrossRefGoogle Scholar
  19. Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.  https://doi.org/10.1162/neco.1997.9.7.1483.CrossRefGoogle Scholar
  20. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4), 411–430.  https://doi.org/10.1016/S0893-6080(00)00026-5.CrossRefGoogle Scholar
  21. Jaber, A. M., Ismail, M. T., & Altaher, A. M. (2014). Empirical mode decomposition combined with local linear quantile regression for automatic boundary correction. Abstract and Applied Analysis, 90(135), 1–8.  https://doi.org/10.1155/2014/731827.CrossRefGoogle Scholar
  22. Jiang, X. P., Wu, F. H., Yu, H. W., & Wu, F. (2015). Mixed pixel decomposition of mineral spectrum based on EMD-ICA method. Geometrical and Applied Optics, 119(5), 893–898.  https://doi.org/10.1134/S0030400X15110260.Google Scholar
  23. Kasahara, J. (2002). Tides, earthquakes, and volcanoes. Science, 297(5580), 348–349.  https://doi.org/10.1126/science.1074601.CrossRefGoogle Scholar
  24. Lei, M., Wang, Q., Liu, X., Xu, B., & Zhang, H. (2017). Influence of ocean tidal loading on InSAR offshore areas deformation monitoring. Geodesy and Geodynamics, 8(1), 70–76.  https://doi.org/10.1016/j.geog.2016.09.004.CrossRefGoogle Scholar
  25. Lin, J., & Zhang, A. (2005). Fault feature separation using wavelet-ICA filter. NDT&E International, 38(6), 421–427.  https://doi.org/10.1016/j.ndteint.2004.11.005.CrossRefGoogle Scholar
  26. Longman, I. M. (1959). Formulas for computing the tidal accelerations due to the moon and sun. Journal of Geophysical Research, 64(12), 2351–2355.  https://doi.org/10.1029/jz064i012p02351.CrossRefGoogle Scholar
  27. Mariyappa, N., Sengottuvel, S., Patel, R., Parasakthi, C., Gireesan, K., Janawadkar, M. P., et al. (2015). Denoising of multichannel MCG data by the combination of EEMD and ICA and its effect on the pseudo current density maps. Biomedical Signal Processing and Control, 18, 204–213.  https://doi.org/10.1016/j.bspc.2014.12.012.CrossRefGoogle Scholar
  28. Métivier, L., de-Viron, O., Conrad, C. P., Renault, S., & Diament, M. (2009). Evidence of earthquake triggering by the solid earth tides. Earth and Planetary Science Letters, 278(3): 370–375.  https://doi.org/10.1016/j.epsl.2008.12.024.
  29. Mijović, B., De-Vos, M., Gligorijević, I., & Huffel, S. V. (2010a). Combining EMD with ICA for extracting independent sources from single channel and two-channel data. Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, 5387–5390.  https://doi.org/10.1109/IEMBS.2010.5626482.Google Scholar
  30. Mijović, B., De-Vos, M., Gligorijević, I., Taelman, J., & Huffel, S. V. (2010b). Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Transactions on Biomedical Engineering, 57(9), 2188–2196.  https://doi.org/10.1109/TBME.2010.2051440.CrossRefGoogle Scholar
  31. SCINTREX LIMITED. (2009). CG-5 Scintrex autograv system operation manual V5.0, 99–172.Google Scholar
  32. Shah, V. P., Younan, N. H., Durbha, S. S., & King, R. L. (2010). Feature identification via a combined ICA-Wavelet method for image information mining. IEEE Geoscience and Remote Sensing Letters, 7(1), 18–22.  https://doi.org/10.1109/LGRS.2009.2020519.CrossRefGoogle Scholar
  33. Stone, J. V. (2002). Independent component analysis: an introduction. Trends in Cognitive Sciences, 6(2), 59–64.  https://doi.org/10.1016/S1364-6613(00)01813-1.CrossRefGoogle Scholar
  34. Sun, H. P., Takemoto, S., Hsu, H. T., Higashi, T., & Mukai, A. (2001). Precise tidal gravity recorded with superconducting gravimeters at stations Wuhan/China and Kyoto/Japan. Journal of Geodesy, 74(10), 720–729.  https://doi.org/10.1007/s001900000139.CrossRefGoogle Scholar
  35. Sun, H. P., Xu, H. Z., Ducarme, B., & Hinderer, J. (1999). Comprehensive comparison and analysis of the tidal gravity observations obtained with superconducting gravimeters at stations in China. Belgium and France. Chinese Science Bulletin, 44(8), 750–755.  https://doi.org/10.1007/BF02909719.CrossRefGoogle Scholar
  36. Tamura, Y. (1987). A harmonic development of the tide-generating potential. Bulletin d’Informations Marées Terrestres, 99, 6813–6855.Google Scholar
  37. Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophysical Journal International, 104(3), 507–516.  https://doi.org/10.1111/j.1365-246X.1991.tb05697.x.CrossRefGoogle Scholar
  38. Timofeev, V. Y., Kalish, E. N., Ardyukov, D. G., Valitov, M. G., Timofeev, A. V., Stus, Y. F., et al. (2017). Gravity observation at continental borderlands (Russia, Primorie, Cape Shults). Geodesy and Geodynamics, 8(3), 193–200.  https://doi.org/10.1016/j.geog.2017.03.011.CrossRefGoogle Scholar
  39. Van Camp, M., & Vauterin, P. (2005). Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Computers & Geosciences, 31(5), 631–640.  https://doi.org/10.1016/j.cageo.2004.11.015.CrossRefGoogle Scholar
  40. Venedikov, A. P., Arnoso, J., & Vieira, R. (2003). VAV: a program for tidal data processing. Computers & Geosciences, 29(4), 487–502.  https://doi.org/10.1016/S0098-3004(03)00019-0.CrossRefGoogle Scholar
  41. Wang, J., Peng, Y., & Peng, X. (2007). Similarity searching based boundary effect processing method for empirical mode decomposition. Electronics Letters, 43(1), 58–59.  https://doi.org/10.1049/el:20072762.CrossRefGoogle Scholar
  42. Wenzel, H. G. (1997). The nanogal software: earth tide data processing package ETERNA 3.30. Bull. Inf. Marées Terrestres, 124, 9425–9439.Google Scholar
  43. Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noises using the empirical mode decomposition method. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597–1611.  https://doi.org/10.1098/rspa.2003.1221.CrossRefGoogle Scholar
  44. Xi, Q. W. (1989). The precision of the development of the tidal generating potential and some explanatory notes. Bulletin d’Informations Marées Terrestres, 105, 7396–7404.Google Scholar
  45. Ye, Y. (2013). Adaptive boundary effect processing for empirical mode decomposition using template matching. Applied Mathematics & Information Sciences, 7(1L), 61–66.  https://doi.org/10.12785/amis/071L10.CrossRefGoogle Scholar
  46. Zarzoso, V., & Comon, P. (2010). Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transaction on Neural Networks, 21(2), 248–261.  https://doi.org/10.1109/TNN.2009.2035920.CrossRefGoogle Scholar
  47. Zarzoso, V., Comon, P., & Kallel, M. (2006). How fast is Fast ICA? Signal Processing Conference, 2006 14th European. IEEE, 2006, 1–5.Google Scholar
  48. Zhou, J. C., Xu, J. Q., & Sun, H. P. (2009). Accurate correction models for tidal gravity in Chinese continent. Chinese Journal of Geophysics, 52(6), 1474–1482.  https://doi.org/10.3969/j.issn.00015733.2009.06.008.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Geodesy and GeomaticsShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.College of Surveying and Geo-informaticsTongji UniversityShanghaiPeople’s Republic of China
  3. 3.State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science & TechnologyShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  4. 4.State Key Laboratory of Geodesy and Earth’s DynamicsInstitute of Geodesy and Geophysics, Chinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations