Pure and Applied Geophysics

, Volume 175, Issue 8, pp 2693–2720 | Cite as

Up-to-date Probabilistic Earthquake Hazard Maps for Egypt

  • Hanan Gaber
  • Mahmoud El-Hadidy
  • Ahmed Badawy


An up-to-date earthquake hazard analysis has been performed in Egypt using a probabilistic seismic hazard approach. Through the current study, we use a complete and homogenous earthquake catalog covering the time period between 2200 BC and 2015 AD. Three seismotectonic models representing the seismic activity in and around Egypt are used. A logic-tree framework is applied to allow for the epistemic uncertainty in the declustering parameters, minimum magnitude, seismotectonic setting and ground-motion prediction equations. The hazard analysis is performed for a grid of 0.5° × 0.5° in terms of types of rock site for the peak ground acceleration (PGA) and spectral acceleration at 0.2-, 0.5-, 1.0- and 2.0-s periods. The hazard is estimated for three return periods (72, 475 and 2475 years) corresponding to 50, 10 and 2% probability of exceedance in 50 years. The uniform hazard spectra for the cities of Cairo, Alexandria, Aswan and Nuwbia are constructed. The hazard maps show that the highest ground acceleration values are expected in the northeastern part of Egypt around the Gulf of Aqaba (PGA up to 0.4 g for return period 475 years) and in south Egypt around the city of Aswan (PGA up to 0.2 g for return period 475 years). The Western Desert of Egypt is characterized by the lowest level of hazard (PGA lower than 0.1 g for return period 475 years).


Seismicity of Egypt seismotectonic model probabilistic seismic hazard logic-tree framework 



The authors are grateful to the Editor in Chief Prof. Fabio Romanili and the anonymous reviewers for their critical reviews which have greatly helped to improve the revised version. We would like to thank Dr. Vladimir Sokolov, at the National Center of Earthquakes and Volcanoes, Saudi Geological Survey, to for reading and revising current version of the manuscript. This work has been carried out at seismology division of the National Research Institute of Astronomy and Geophysics (NRIAG).


  1. Abdel Rahman, M., Tealeb, A., Mohamed, A., Deif, A., Abou Elenean, K., & El-Hadidy, M. S. (2008). Seismotectonic zones at Sinai and its surrounding. The first Arab conference on Astronomy and Geophysics, Oct, (pp. 20–22), 2008, Helwan, Egypt.Google Scholar
  2. Abrahamson, N. A., & Silva, W. J. (1997). Empirical response spectra attenuation relations for shallow crustal earthquakes. Seismological Research Letters, 68, 94–127.CrossRefGoogle Scholar
  3. Abrahamson, N. A., & Silva, W. J. (2008). Summary of the Abrahamson & Silva NGA groundmotion relations. Earthquake Spectra, 24, 67–97.CrossRefGoogle Scholar
  4. Abu El-Enean, K. (1993). Seismotectonics of the Mediterranean region north of Egypt and Libya, M. Sc. Thesis, Fac. of Sci., Mansoura Univ., Egypt, 198.Google Scholar
  5. Abu El-Enean, K. (2010). Seismotectonics studies of El-Dabaa and its surroundings. Unpublished Report.Google Scholar
  6. Abu El-Eneanm, K. (1997). A study on the seismotectonics of Egypt in relation to the Mediterranean and Red Sea tectonics. Ph.D. Thesis, Ain Shams Univ., Egypt. 200.Google Scholar
  7. Al-Arifi, N. S., Fath Elbary, R. S., Khalil, A. R., & Lashin, A. A. (2013). A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Natural Hazards, 69(3), 1435e1457. Scholar
  8. Ambraseys, N. N. (2001). Far-field effects of Eastern Mediterranean earthquakes in lower Egypt. Journal of Sesimology, 5, 263–268.CrossRefGoogle Scholar
  9. Ambraseys, N. N., Melville, C. P., & Adams, R. D. (1994). The seismicity of Egypt, Arabia and the Red Sea, a historical review (pp. 1–137). King Abdul-Aziz City for Science and Technology, Cambridge University Press, Amsterdam.Google Scholar
  10. ASCE (2010). Minimum design loads for buildings and other Structures (ASCE Standard 7-10 including Supplement No .1) American Society of Civil Engineers, Reston VA.Google Scholar
  11. Badawy, A. (1996). Seismicity and kinematic evolution of the Sinai Plate. PhD dissertation, Eötvös University.Google Scholar
  12. Badawy, A., Al-Gabry M., & Girgis M. (2010). Historical seismicity of Egypt, A study for previous catalogues producing revised weighted catalogue the Second Arab Conference for Astronomy and Geophysics. Egypt.Google Scholar
  13. Badawy, A., & Horvath, F. (1999). Recent stress field of the Sinai subplate region. Tectonophys, 304, 385–403.CrossRefGoogle Scholar
  14. Badawy, A., Korrat, I., El-Hadidy, M., & Gaber, H. (2016). Probabilistic earthquake hazard analysis for Cairo, Egypt. Journal of Seismology, 20(1), 449–461. Scholar
  15. Badawy, A., Korrat, I., El-Hadidy, M., & Gaber, H. (2017). Update earthquake risk assessment in Cairo, Egypt. Journal of Seismology, 21, 571–589. Scholar
  16. Ben-Menahem, A., Nur, A., & Vered, M. (1976). Tectonics, seismicity and structure of the Afro-Eurasian junction- the breaking of an incoherent plate. Physics of the Earth and Planetary Interiors, 12, 1–50.CrossRefGoogle Scholar
  17. Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783–793.CrossRefGoogle Scholar
  18. Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., & Sabetta, F. (2005). On the use of logic trees for ground-motion prediction equations in seismic hazard analysis. Bulletin of the Seismological Society of America, 95(2), 377–389.CrossRefGoogle Scholar
  19. Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99–138.CrossRefGoogle Scholar
  20. Boore, D. M., Joyner, W. B., & Fumal, T. E. (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American Earthquakes. A summary of recent work. Seismological Research Letters, 68, 128–153.CrossRefGoogle Scholar
  21. Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171.CrossRefGoogle Scholar
  22. Chiou, B. S. J., & Youngs, R. R. (2008). Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters. Earthquake Spectra, 24, 173–215.CrossRefGoogle Scholar
  23. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 18, 1583–1606.Google Scholar
  24. Cotton, F. (2006). Criteria for selecting and adjusting ground-motion models for specific target applications: applications to Central Europe and rock sites. Journal of Seismology, 10, 137–156.CrossRefGoogle Scholar
  25. Deif, A. (1998). Seismic hazard assessment in and around Egypt in relation to plate tectonics, Ph.D. Thesis, Fac. of Sci., Ain Shams Univ. Egypt. 251.Google Scholar
  26. Deif, A., Elenean, K. A., El Hadidy, M., Tealeb, A., & Mohamed, A. (2009). Probabilistic seismic hazard maps for Sinai Peninsula. Egypt. Journal of Geophysics and Engineering, 6, 288–297.CrossRefGoogle Scholar
  27. Deif, A., Hamed, H., Ibrahim, H. A., Abou Elenean, K., & El-Amin, E. (2011). Seismic hazard assessment in Aswan Egypt. Journal of Geophysics and Engineering, 8(2011), 531–548.CrossRefGoogle Scholar
  28. Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., et al. (2002). On the extension in Western Anatolia and the Aegean Sea. Journal Virtual Explorer, 7, 117–131.Google Scholar
  29. El Sayed, A., & Wahlstrom, R. (1996). Distribution of energy release, b-values and Seismic Hazard in Egypt. Natural Hazard, 13, 133–150.CrossRefGoogle Scholar
  30. El-Hadidy M. (2008). Seismotectonics and Seismic hazard studies for Sinai Peninsula, Egypt M. Sc Thesis, Ain Shams University.Google Scholar
  31. El-Hadidy, M. (2012). Seismotectonics and seismic hazard studies in and around Egypt, PhD Thesis, Ain Shams Univ., 2012.Google Scholar
  32. El-Hadidy M. S., Gaber H., & Badawy, A. (2017). Comprehensive earthquake catalogue of Egypt and its surroundings, accepted in the Ninth International Conference on the Geology of Africa, Assuit, 7-9 November 2017.Google Scholar
  33. El-Sayed, A., Vaccari, F., & Panza, D. F. (2001). Deterministic seismic hazard in Egypt. Geophysical Journal International, 144, 555–567.CrossRefGoogle Scholar
  34. Esteva L (1970). Seismic risk and seismic design decision. In. Hansen RY (ed) Seismic design for nuclear power plants. Mass. Inst. Techn, Cambridge, pp 142–182.Google Scholar
  35. FEMA. (2004). NEHRP Recommended Provisions for Seismic Regulations for NEW Buildings and Other Structures, FEMA 450-1/2003 Part 1: Provisions. Washington, DC: Federal Emergency Management Agency.Google Scholar
  36. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1367.Google Scholar
  37. Garfunkel, Z., & Bartov, Y. (1977). The tectonics of the Suez Rift. Bulletins Geological Survey of Israel, 71, 1–44.Google Scholar
  38. Garfunkel, Z., Ben-Avraham, Z., & Kagan, E. (2014). Dead Sea transform fault system: reviews modern approaches in solid earth sciences (vol 6),,© Springer Science + Business Media Dordrecht 2014.
  39. Gutenberg, B., & Richter, C. F. (1944). Seismicity of the earth and associated phenomena (p. 310). Princeton: Princeton University Press.Google Scholar
  40. Hasegawa, H. S., Basham, P. W., & Berry, M. J. (1981). Attenuation relations for strong seismic ground motion in Canada. Bulletin of the Seismological Society of America, 71, 1943–1962.Google Scholar
  41. Hassan, H. M., Panza, G. F., Romanelli, F., & ElGabry, M. N. (2017a). Insight on seismic hazard studies for Egypt. Engineering Geology, 220, 99–109.CrossRefGoogle Scholar
  42. Hassan, H. M., Romanelli, F., Panza, G. F., ElGabry, M. N., & Magrin, A. (2017b). Update and sensitivity analysis of the neo-deterministic seismic hazard assessment for Egypt. Engineering Geology, 218, 77–89.CrossRefGoogle Scholar
  43. ICC. (2003). International Code Council. The International Building Code, as mandated and incorporated by the States and Municipalities including Connecticut, Sussex Country (Delaware), and by the code of Federal Regulations at 36 CFR 1191.Google Scholar
  44. ICC. (2012). International Code Council. International Building Code, Building Officials and Code Administrators International Conference of Building Officials, and Southern Building Code Congress International, Inc., Birmingham, AL.Google Scholar
  45. Ishimoto, M., & Iida, K. (1939). Observations sur les seims euregistré par lemicroseisograph construite dernierment (I). Bull Earthq Res Inst, Univ Tokyo, 17, 443–478.Google Scholar
  46. Ismail, A. (1960). Near and local earthquakes of Helwan (1903–1950). Bull. Helwan Observ, 49, 33.Google Scholar
  47. Jackson, J. A., & Mckenzie, D. (1984). Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77, 185–264.CrossRefGoogle Scholar
  48. Kijko, A. (2004). Estimation of the maximum earthquake magnitude, M max. Pure and Applied Geophysics, 161, 1655–1681.CrossRefGoogle Scholar
  49. Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700. Scholar
  50. Luen, B., & Stark, P. B. (2012). Poisson tests of declustered catalogs. Geophysical Journal International, 189(1), 691–700.CrossRefGoogle Scholar
  51. Maamoun, M., & Ibrahim, E. M. (1978). Tectonic activity in Egypt as indicated by earthquakes. Helwan Observatory Bulletin, 170, 1–13.Google Scholar
  52. Maamoun, M., Megahed, A., & Allam, A. (1984). Seismicity of Egypt. Bull. Helwan Instit. Astronomy and Geophysics, 4, 109–160.Google Scholar
  53. McGuire, R.K. (1976). FORTRAN computer programs for seismic risk analysis. U.S. Geol. survey open-file reports No 76-67.Google Scholar
  54. Mesherf, W. (1990). Tectonic framework. In The Geology of Egypt (Said Red.) (pp. 113–155). Rotterdam: A. A. Balkema.Google Scholar
  55. Mignan, A., & Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis (CORSSA). Scholar
  56. Milne, W. C., & Davenport, A. G. (1969). Distribution of the earthquakes risk in Canada. Bulletin of the Seismological Society of America, 59, 729–759.Google Scholar
  57. Mogi, K. (1963). The fracture of a semi-infinite body caused by a inner stress origin and its relation to the earthquake phenomena (Second Paper). Bull Earthquake Res Inst, 41, 595–614.Google Scholar
  58. Mohamed, A. A., El-hadidy, M., Deif, A., & AbouElenean, K. (2012). Seismic hazard studies in Egypt. NRIAG J Astron Geophys, 1, 119–140.CrossRefGoogle Scholar
  59. Mulargia, F., Gasperini, P., & Tinti, S. (1987). Contour mapping of Italian seismicity. Tectonophysics, 142, 202–216.CrossRefGoogle Scholar
  60. Neev, D. (1975). Tectonic evolution of the middle east and levantine basin (Eastern Most Mediterranean). Geology, 3, 683–686.CrossRefGoogle Scholar
  61. Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2012). Program for computing seismic hazard. Mexico City: Universdad Naciional Autonome de Mexico, Instituto de Ingeniera.Google Scholar
  62. Papadopoulos, G., Knodopoulou, D., Leventakis, A., & Pavlides, S. (1986). Seismotectonics of the Aegean region. Tectonophys, 124, 67–84.CrossRefGoogle Scholar
  63. Papazachos, B. C. (1990). Seismicity of the Aegean and surrounding area. Tectonophysics, 178, 287–308.CrossRefGoogle Scholar
  64. Papazachos, B. C., & Papaioannou, Ch A. (1993). Long-term earthquake prediction in the Aegean area based on a time and magnitude predicate model. Pure Appl Geophysics, 140, 595–612.CrossRefGoogle Scholar
  65. Papioannou, C. H. A., & Papazachos, B. C. (2000). Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bulletin of the Seismological Society of America, 90, 22–33.CrossRefGoogle Scholar
  66. Reiter, L. (1990). Earthquake hazard analysis (p. 254). Columbia: Columbia University Press.Google Scholar
  67. Riad, S., Ghalib, M., El-Difrawy, M. A., & Gamal, M. (2000). Probabilistic seismic hazard assessment in Egypt. Annals Geological Survey of Egypt, 23, 851–881.Google Scholar
  68. Said, R. (1990). The geology of Egypt. Rotterdam, Brookfield: A.A Balkema, Ralkema.Google Scholar
  69. Salamon, A., Avraham, H., Garfunkel, Z., & Ron, H. (2003). Seismotectonics of Sinai subplate-Eastern Mediterranean region. Geophysical Journal International, 155, 149–173.CrossRefGoogle Scholar
  70. Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016a). Updated probabilistic seismic-hazard values for Egypt. Bulletin of the seismological Society of America, 106(4), 1788–1801. Scholar
  71. Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016b). An earthquake catalogue (2200 B.C. to 2013) for seismotectonic and seismic hazard assessment studies in Egypt. In S. D’Amico (Ed.), Earthquakes and Their Impact on Society (pp. 97–136). Cham: Springer.CrossRefGoogle Scholar
  72. Sawires, R., Peláez, J. A., Fat-Helbary, R. E., Ibrahim, H. A., & García-Hernández, M. T. (2016c). An updated seismic source model for Egypt. In A. Moustafa (Ed.), Earthquake engineering—from engineering seismology to optimal seismic design of engineering structures (pp. 1–52). Rijeka: InTech.Google Scholar
  73. Scholz, C. (1968). The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399–415.Google Scholar
  74. Sestini, G. (1984). Tectonic and sedimentary history of NE African margin (Egypt/Libya). In J. E. Dixon & A. F. Robertson (Eds.), The geological evaluation of the Eastern Mediterranean (pp. 161–175). Oxford, UK: Blackwell.Google Scholar
  75. Sieberg, A. (1932). Handbuch der geophysik, band IV, erdbeben-geographie (pp. 527–1005). Berlin: Borntraeger.Google Scholar
  76. Sobaih M (1996). Seismic design criteria for Egypt, 11th World Conference on the Earthquake Engineering. Paper No. 2158, pp. 7.Google Scholar
  77. Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of first microzonation conference (pp. 897–909), Seattle, USA.Google Scholar
  78. Stucchi, M., Albini, P., Mirto, C., & Rebez, A. (2004). Assessing the completeness of Italian historical earthquake data. Annales Geophysicae, 47(2/3), 659–673.Google Scholar
  79. Uhrhammer, R. (1986). Characteristics of northern and southern California seismicity. Earthq Notes, 57, 21.Google Scholar
  80. Van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online resource for statistical seismicity analysis (CORSSA),
  81. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95, 648–696. Scholar
  82. Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphery, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68, 58–73.CrossRefGoogle Scholar
  83. Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96, 898–913.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seismology DepartmentNational Research Institute of Astronomy and GeophysicsCairoEgypt

Personalised recommendations