Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 6, pp 1939–1950 | Cite as

The 2017 México Tsunami Record, Numerical Modeling and Threat Assessment in Costa Rica

  • Silvia Chacón-Barrantes
Article
Part of the following topical collections:
  1. The September 2017 Chiapas and Central Mexico earthquakes and tsunamis

Abstract

An Mw 8.2 earthquake and tsunami occurred offshore the Pacific coast of México on 2017-09-08, at 04:49 UTC. Costa Rican tide gauges have registered a total of 21 local, regional and far-field tsunamis. The Quepos gauge registered 12 tsunamis between 1960 and 2014 before it was relocated inside a harbor by late 2014, where it registered two more tsunamis. This paper analyzes the 2017 México tsunami as recorded by the Quepos gauge. It took 2 h for the tsunami to arrive to Quepos, with a first peak height of 9.35 cm and a maximum amplitude of 18.8 cm occurring about 6 h later. As a decision support tool, this tsunami was modeled for Quepos in real time using ComMIT (Community Model Interface for Tsunami) with the finer grid having a resolution of 1 arcsec (~ 30 m). However, the model did not replicate the tsunami record well, probably due to the lack of a finer and more accurate bathymetry. In 2014, the National Tsunami Monitoring System of Costa Rica (SINAMOT) was created, acting as a national tsunami warning center. The occurrence of the 2017 México tsunami raised concerns about warning dissemination mechanisms for most coastal communities in Costa Rica, due to its short travel time.

Keywords

2017 México tsunami Costa Rica tsunami preparedness tsunami records tsunami real-time modeling 

References

  1. Adriano, B., Fujii, Y., Koshimura, S., Mas, E., Ruiz-Angulo, A., & Estrada, M. (2018). Tsunami source inversion using tide gauge and DART tsunami waveforms of the 2017 Mw 8.2 Mexico earthquake. Pure and Applied Geophysics, 175(1), 35–48.  https://doi.org/10.1007/s00024-017-1760-2.CrossRefGoogle Scholar
  2. Bernard, E., & Titov, V. V. (2015). Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053), 20140371.  https://doi.org/10.1098/rsta.2014.0371.CrossRefGoogle Scholar
  3. Burger, E. F., Kamb, L., & Gately, K. (2014). Tsunami event information dissemination through Tweb. In AGU fall meeting abstracts (p. abstract #S21A-4405).Google Scholar
  4. Burger, E. F., Kamb, L., Nakamura, T., & Pells, C. (2016). Tweb: a web-based and cloud-capable tsunami forecast tool. Retrieved January 1, 2016, from http://nctr.pmel.noaa.gov/twebinfo/.
  5. Burger, E. F., Kamb, L., Pells, C., & Nakamura, T. A. (2013). Web-based and cloud capable tsunami forecast tool: Tweb. In AGU fall meeting abstracts (p. abstract #NH43A-1730).Google Scholar
  6. Chacón-Barrantes, S. (2016). Evaluación de la peligrosidad del tsunami de Chile del 16 de setiembre del 2015 para Costa Rica (Hazard assessment of the Chilean tsunami of September 16th, 2015 for Costa Rica). Revista de Ciencias Marinas Y Costeras, 8(1), 113–128.  https://doi.org/10.15359/revmar.8-1.8.CrossRefGoogle Scholar
  7. Chacón-Barrantes, S., & Gutiérrez-Echeverría, A. (2017). Tsunamis recorded in tide gauges at Costa Rica Pacific coast and their numerical modeling. Natural Hazards.  https://doi.org/10.1007/s11069-017-2965-5.Google Scholar
  8. Chacón-Barrantes, S., López, A. M., Sanchez, R., & Luque, N. (2017). A collaborative effort between Caribbean States for tsunami numerical modeling: case study CaribeWave15. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1687-7.Google Scholar
  9. Fritz, H. M., Kalligeris, N., Ortega, E., & Broncano, P. (2008). 15 August 2007 Peru tsunami runup and inundation. Geophysical Research Letters, 35, L10604.  https://doi.org/10.1029/2008GL033494.CrossRefGoogle Scholar
  10. Goto, C., Ogawa, Y., & Shuto, N. (1997). Numerical method of tsunami simulation with the Leap-Frog scheme. IOC Manuals and Guides 35.Google Scholar
  11. Gusman, A. R., Mulia, I. E., & Satake, K. (2018). Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophysical Research Letters, 45(2), 646–653.CrossRefGoogle Scholar
  12. Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2016). Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2), 643–650.  https://doi.org/10.1002/2015GL067297.CrossRefGoogle Scholar
  13. Heidarzadeh, M., Necmioglu, O., Ishibe, T., & Yalciner, A. C. (2017). Bodrum–Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system. Geoscience Letters, 4(1), 1–11.  https://doi.org/10.1186/s40562-017-0097-0.CrossRefGoogle Scholar
  14. Horan, J., Ritchie, L. A., Meinhold, S., Gill, D. A., Houghton, B. F., Gregg, C. E., et al. (2010). Evaluating disaster education: The National Oceanic and Atmospheric Administration’s TsunamiReady™ community program and risk awareness education efforts in New Hanover County, North Carolina. New Directions for Evaluation, 2010(126), 79–93.  https://doi.org/10.1002/ev.331.CrossRefGoogle Scholar
  15. INEC. (2017). Instituto Nacional de Estadística y Censos. Retrieved from http://www.inec.go.cr.
  16. IOC/UNESCO. (2018a). Sea Level Station Monitoring Facility. Retrieved from http://www.ioc-sealevelmonitoring.org/map.php.
  17. IOC/UNESCO. (2018b). Tsunami Ready—International. Retrieved January 1, 2018, from http://itic.ioc-unesco.org/index.php?option=com_content&view=category&id=2234&Itemid=2758.
  18. IOC/UNESCO, IOH, & BODC. (2003). Centenary Edition of the GEBCO Digital Atlas. Liverpool, U.K.Google Scholar
  19. Kamb, L., Moore, C., & Burger, E. F. (2014). ComMIT and Tweb Integration: global tsunami modeling done locally. In AGU fall meeting abstracts (p. abstract #S21A-4409).Google Scholar
  20. NCEI/NGDC/WDS. (2017). National Geophysical Data Center, World Data Service. Global Historical Tsunami Database. National Geophysical Data Center, NOAA.  https://doi.org/10.7289/v5pn93h7.
  21. Okuwaki, R., & Yagi, Y. (2017). Rupture process during the Mw 8.1 2017 Chiapas Mexico earthquake: shallow intraplate normal faulting by slab bending. Geophysical Research Letters, 44(23), 11,816–11823.  https://doi.org/10.1002/2017GL075956.CrossRefGoogle Scholar
  22. Perry, S. D. (2007). Tsunami warning dissemination in Mauritius. Journal of Applied Communication Research, 35(4), 399–417.  https://doi.org/10.1080/00909880701611060.CrossRefGoogle Scholar
  23. PTWC. (2017a). Tsunami Message Number 1 Mexico Sep 8 2017. Retrieved October 1, 2017, from http://ptwc.weather.gov/text.php?id=pacific.TSUPAC.2017.09.08.0455.
  24. PTWC. (2017b). Tsunami Message Number 2 Mexico Sep 8 2017. Retrieved from http://ptwc.weather.gov/text.php?id=pacific.TSUPAC.2017.09.08.0525.
  25. Rabinovich, A. B., Titov, V. V., Moore, C., & Eblé, M. C. (2017). The 2004 Sumatra tsunami in the southeastern Pacific Ocean: New global insight from observations and modeling. Journal of Geophysical Research, 122, 7992–8019.  https://doi.org/10.1002/2017JC013078.Google Scholar
  26. Ramírez-Herrera, M. T., Corona, N., Ruiz-Angulo, A., Melgar, D., & Zavala-Hidalgo, J. (2018). The 8 September 2017 tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure and Applied Geophysics, 175(1), 25–34.  https://doi.org/10.1007/s00024-017-1765-x.CrossRefGoogle Scholar
  27. Satake, K., & Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174(1), 1–9.  https://doi.org/10.1007/s00024-016-1450-5.CrossRefGoogle Scholar
  28. SINAMOT. (2017). SINAMOT facebook site. Retrieved December 18, 2017, from https://www.facebook.com/sinamot.cr/.
  29. SSN-Mexico. (2017). Reporte especial Sismo de Tehuantepec (2017-09-07 23:49 Mw 8.2).Google Scholar
  30. Suzuki, W., Pulido, N., & Aoi, S. (2016). Rupture process and strong-motion generation of the 2014 Iquique, Northern Chile, earthquake. Journal of Earthquake and Tsunami, 10(2), 1640008-1-19.  https://doi.org/10.1142/S179343111640008X.Google Scholar
  31. Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C., Newman, J. C., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117, C08008.  https://doi.org/10.1029/2011JC007635.CrossRefGoogle Scholar
  32. Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6), 3116004.  https://doi.org/10.1061/(ASCE)WW.1943-5460.0000357.CrossRefGoogle Scholar
  33. Titov, V. V., Moore, C., Greenslade, D. J. M., Pattiaratchi, C., Badal, R., Synolakis, C. E., et al. (2011). A new tool for inundation modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure and Applied Geophysics, 168(11), 2121–2131.  https://doi.org/10.1007/s00024-011-0292-4.CrossRefGoogle Scholar
  34. Ugarte, J. (2017). Sismo en México no afectaría Costa Rica, pese alerta de tsunami. CRHoy. Retrieved from https://www.crhoy.com/nacionales/sismo-en-mexico-no-afectaria-costa-rica-pese-alerta-de-tsunami/.
  35. Yamazaki, Y., Cheung, K. F., & Kowalik, Z. (2010). Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. International Journal for Numerical Methods in Fluids, 67(December 2010), 2081–2107.  https://doi.org/10.1002/fld.2485.Google Scholar
  36. Yue, H., Lay, T., Schwartz, S. Y., Rivera, L., Protti, M., Dixon, T. H., et al. (2013). The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. Journal of Geophysical Research: Solid Earth, 118(September 2012), 1–14.  https://doi.org/10.1002/jgrb.50379.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RONMAC Program and SINAMOT, Depto. de FísicaUniversidad NacionalHerediaCosta Rica

Personalised recommendations