Background Stress State Before the 2008 Wenchuan Earthquake and the Dynamics of the Longmen Shan Thrust Belt

  • Kaiying Wang
  • Yu. L. Rebetsky
  • Xiangdong Feng
  • Shengli Ma


A stress reconstruction was performed based on focal mechanisms around the Longmen Shan region prior to the 2008 Ms 8.0 Wenchuan earthquake using a newly developed algorithm (known as MCA). The method determines the stress tensor, including principal axes orientations, and quantitative stress values, such as the effective confining pressure and maximum shear stress. The results of the MCA application using data recorded by the regional network from 1989 to April 2008 show the background stress state around the Longmen Shan belt before the Wenchuan earthquake. The characteristics of the stress orientation reveal that the Longmen Shan region is primarily under the eastward extrusion of the eastern Tibetan plateau. Non-uniform quantitative stress distributions show low stress levels in the upper crust of the middle Longmen Shan segment, which is consistent with the observed high-angle reverse faulting associated with the 2008 Wenchuan earthquake. In contrast, other study areas, such as the Bayankela block and the NW strip extending to the Sichuan basin, show high stress intensity. This feature coincides with heterogeneity in the wave speed image of the upper crust in this region, which shows high S-wave speed in the high stress areas and comparatively low S-wave speed in low stress areas. Deformation features across the Longmen Shan belt with the slow rates of convergence determined by GPS and the distribution of surface deformation rates also are in keeping with our stress results. We propose a dynamic model in which sloping uplift under the Longmen Shan, which partly counteracts the pushing force from the eastern plateau, causes the low-quantitative stresses in the upper crust beneath the Longmen Shan. The decreasing gravitational potential energy beneath the Longmen Shan leads to earthquake thrust faulting and plays an important role in the geodynamics of the area that results from ductile thickening of the deep crust behind the Sichuan basin, creating a narrow, steep margin.


Wenchuan earthquake deformation features MCA quantitative stress background stress state low stress level sloping uplift 



This research is supported by the National Natural Science Foundation of China (Grant no. 41572181) and the Basic Research Funds from the Institute of Geology, China Earthquake Administration (Grant no. IGCEA1605).


  1. Angelier, J. (1979). Determination of mean principal directions of stresses for a given fault population. Tectonophysics, 56, T17–T26.CrossRefGoogle Scholar
  2. Angelier, J. (1989). From orientation to magnitude in paleostress determinations using fault slip data. Journal of Structural Geology, 11(1-2), 37–49.CrossRefGoogle Scholar
  3. Angelier, J. (1990). Inversion field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 10, 363–367.CrossRefGoogle Scholar
  4. Angelier, J., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société géologique de France XIX, 7(6), 1309–1318.CrossRefGoogle Scholar
  5. Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., et al. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18, 4–11.CrossRefGoogle Scholar
  6. Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750.Google Scholar
  7. Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics, 116, 615–626.Google Scholar
  8. Carey-Gailhardis, E., & Mercier, J. L. (1987). A numerical method for determining the state of stress using focal mechanisms of earthquake populations: Application to Tibetan teleseismic and microseismicity of Southern Peru. Earth and Planetary Science Letters, 82, 165–179.CrossRefGoogle Scholar
  9. Chen, Q. C., Feng, C. J., Meng, W., et al. (2012). Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake. Chinese Journal of Geophysics, 55(12), 3923–3932.Google Scholar
  10. Chen, J. H., Liu, Q. Y., Li, S. C., et al. (2009). Seismotectonic study by relocation of the Wenchuan Ms 8.0 earthquake sequence. Chinese Journal of Geophysics, 52(2), 390–397.CrossRefGoogle Scholar
  11. Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.CrossRefGoogle Scholar
  12. Copley, A. (2008). Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophysical Journal International, 174, 1081–1100.CrossRefGoogle Scholar
  13. Ellsworth, W. L., & Xu, Z. H. (1980). Determination of the stress tensor from focal mechanism data. EOS Transactions AGU, 61, 1117.Google Scholar
  14. Feng, S. Y., Zhang, P. Z., Liu, B. J., et al. (2016). Deep crustal deformation of the Longmen Shan, eastern margin of the Tibetan Plateau, from seismic reflection and finite element modeling. Journal of Geophysical Research: Solid Earth, 121, 767–787.Google Scholar
  15. Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89, 9305–9320.CrossRefGoogle Scholar
  16. Gushchenko, O. I., & Kuznetsov, V. A. (1979). Determination of the orientations and the ratio of principal stresses on the basin of tectonic fault slip data. In Stress fields in the lithosphere, Nauka, Moscow (pp. 60–66) (in Russian).Google Scholar
  17. Hardebeck, J. L. (2012). Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophysical Research Letters, 39, L21313.CrossRefGoogle Scholar
  18. Hardebeck, J. L., & Shearer, M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444.CrossRefGoogle Scholar
  19. Heidbach, O., Tingay, M., Barth, A., et al. (2010). Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482, 3–15.CrossRefGoogle Scholar
  20. Houseman, G., & England, P. (1993). Crustal thickening versus lateral expulsion in the Indian–Asian continental collision. Journal of Geophysical Research, 98, 12233–12249.CrossRefGoogle Scholar
  21. Kirby, E., Whipple, K., & Harkins, N. (2008). Topography reveals seismic hazard. Nature Geoscience, 1(8), 485–487.CrossRefGoogle Scholar
  22. Kisslinger, C. (1980). Evaluation of S to P amplitude ratios for determining focal mechanisms from regional network observations. Bulletin of the Seismological Society of America, 70, 999–1014.Google Scholar
  23. Kisslinger, C., Bowman, J. R., & Koch, K. (1981). Procedures for computing focal mechanisms from local (SV/P) data. Bulletin of the Seismological Society of America, 71(6), 1719–1729.Google Scholar
  24. Liang, S. H., & Li, Y. (1984). On the determining of source parameters of small earthquakes by using amplitude ratios of P and S from regional network observations. Chinese Journal of Geophysics, 27(3), 249–257.Google Scholar
  25. Lin, J. Z., Jiang, W. Q., Li, Y. M., et al. (1991). Determination of source parameters of small earthquakes in the east part of Guangdong and South part of Fujian province. Acta Seismologica Sinica, 13(4), 420–429.Google Scholar
  26. Liu, Q. Y., Hilst, Robert V. D., Li, Y., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience. Scholar
  27. Liu-Zeng, J., Zhang, Z. Q., Wen, L., et al. (2009). Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286, 355–370.CrossRefGoogle Scholar
  28. Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research, 89, 11517–11526.CrossRefGoogle Scholar
  29. Rau, R. J., Wu, F. T., & Shin, T. C. (1996). Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio. Bulletin of the Seismological Society of America, 86(5), 1270–1283.Google Scholar
  30. Rebetsky, Yu L, Kuchai, O. A., Sycheva, N. A., et al. (2012). Development of inversion methods on fault slip data: Stress state in orogenes of the Central Asia. Techtonophysics, 581, 114–131.CrossRefGoogle Scholar
  31. Rebetsky, Yu L, Polets, A Yu., & Zlobin, T. K. (2016). The state of stress in the Earth’s crust along the northwestern flank of the Pacific seismic focal zone before the Tohoku earthquake of 11 March 2011. Tectonophysics, 685, 60–76.CrossRefGoogle Scholar
  32. Royden, L. H., Burchfiel, B. C., King, R., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–790.CrossRefGoogle Scholar
  33. Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321, 1054–1058.CrossRefGoogle Scholar
  34. Shen, Y., Forsyth, D. W., Conder, J., & Dorman, L. M. (1997). Investigation of microearthquake activity following an intraplate teleseismic swarm on the west flank of the southern East Pacific Rise. Journal of Geophysical Research, 102(B1), 459–475.CrossRefGoogle Scholar
  35. Snoke, J. A., Munsey, J. W., Teague, A. G., & Bollinger, G. A. (1984). A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthquake Notes, 55(3), 15.Google Scholar
  36. Tapponnier, P., Peltzer, G., Dain, A. Y. L., et al. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611–616.CrossRefGoogle Scholar
  37. Tapponnier, P., Xu, Z., Roger, F., et al. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677.CrossRefGoogle Scholar
  38. von Mises, R. (1928). Mechanik der plastischen Formänderung von Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik, 8, 161–185.CrossRefGoogle Scholar
  39. Wan, Y. G., Shen, Z. K., & Lan, C. X. (2006). Deviatoric stress level estimation according to principle axes rotation of stress field before and after large strike-slip type earthquake and stress drop. Chinese Journal of Geophysics, 49(3), 838–844.CrossRefGoogle Scholar
  40. Wang, F., Wang, M., Wang, Y. Z., & Shen, Z. K. (2015). Earthquake potential of the Sichuan-Yunnan region, western China. Journal of Asian Earth Sciences, 107, 232–243.CrossRefGoogle Scholar
  41. Xu, Z. H., Wang, S. Y., Huang, Y. R., et al. (1992). Tectonic stress field of China from a large number of small earthquakes. Journal of Geophysical Research, 97(B8), 11867–11877.CrossRefGoogle Scholar
  42. Xu, X., Wen, X., & Yu, G. (2009). Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake China. Geology, 37, 515–518.CrossRefGoogle Scholar
  43. Yang, Y. R., Johnson, K. M., & Chuang, R. Y. (2013). Inversion for absolute deviatoric crustal stress using focal mechanisms and coseismic stress changes: The 2011 M9 Tohoku-oki, Japan, earthquake. Journal of Geophysical Research, 118, 5516–5529.Google Scholar
  44. Zhang, P. Z., Xu, X. W., Wen, X. Z., et al. (2008). Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4), 1066–1073.CrossRefGoogle Scholar
  45. Zoback, M. L. (1992). First and second order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97, 11703–11728.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Earthquake Dynamics, Institute of GeologyChina Earthquake AdministrationBeijingChina
  2. 2.Institute of Physics of the EarthRussian Academy of SciencesMoskvaRussia
  3. 3.Earthquake Administration of Hebei ProvinceShijiazhuangChina

Personalised recommendations