Skip to main content
Log in

The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Accerboni, E., Castelli, F., & Mosetti, F. (1971). Sull’uso di modelli matematici idrodinamici per lo studio dell’acqua alta a Venezia. Bollettino di Geofisica Teorica ed Applicata, 13, 18–35.

    Google Scholar 

  • Accerboni, E., & Manca, B. (1973). Storm surge forecasting in the Adriatic Sea by means of a two-dimensional hydrodynamical numerical model. Bollettino di Geofisica Teorica ed Applicata, 15, 3–22.

    Google Scholar 

  • Adloff, F., Somot, S., Sevault, F., Jorda, G., Aznar, R., Deque, M., et al. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45, 2775–2802.

    Article  Google Scholar 

  • Airy, G. B. (1845). Tides and waves. Encyclopaedia Metropolitana, 5, 241–396.

    Google Scholar 

  • Ambraseys, N., & Synolakis, C. (2010). Tsunami catalogs for the Eastern Mediterranean, revisited. Journal of Earthquake Engineering, 14, 309–330.

    Article  Google Scholar 

  • Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., & Krestenitis, Y. N. (2015). Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dynamics of Atmospheres and Oceans, 71, 56–82.

    Article  Google Scholar 

  • Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., et al. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26, 2463–2486.

    Article  Google Scholar 

  • Antonioli, F., Ferranti, L., Fontana, A., Amorosi, A., Bondesan, A., Braitenberg, C., et al. (2009). Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quaternary International, 206, 102–133.

    Article  Google Scholar 

  • Antonioli, F., Lo Presti, V., Rovere, A., Ferranti, L., Anzidei, M., Furlani, S., et al. (2015). Tidal notches in Mediterranean Sea: A comprehensive analysis. Quaternary Science Reviews, 119, 66–84.

    Article  Google Scholar 

  • Arabelos, D. N., Papazachariou, D. Z., Contadakis, M. E., & Spatalas, S. D. (2011). A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation. Ocean Science, 7, 429–444.

    Article  Google Scholar 

  • Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., & Canestrelli, P. (2007). A finite element operational model for storm surge prediction in Venice. Estuarine, Coastal and Shelf Science, 75, 236–249.

    Article  Google Scholar 

  • Baker, I., Peterson, A., Brown, G., & McAlpine, C. (2012). Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landscape and Urban Planning, 107, 127–136.

    Article  Google Scholar 

  • Bargagli, A., Carillo, A., Piscane, G., Ruti, P. M., Struglia, M. V., & Tartaglione, N. (2002). An integrated forecast system over the Mediterranean basin: Extreme surge prediction in the northern Adriatic Sea. Monthly Weather Review, 130, 1317–1332.

    Article  Google Scholar 

  • Barnett, T. P. (1984). The estimation of “global” sea level change: A problem of uniqueness. Journal of Geophysical Research, 89, 7980–7988.

    Article  Google Scholar 

  • Barriopedro, D., Garcia-Herrera, R., Lionello, P., & Pino, C. (2010). A discussion of the links between solar variability and high-storm-surge events in Venice. Journal of Geophysical Research, 115, D13101. doi:10.1029/2009JD013114.

    Article  Google Scholar 

  • Bedosti, B. (1980). Considerazioni sul maremoto adriatico (tsunami) del 21.6.1978 (in Italian). Supplemento Bollettini Sismici Provv, 12–14–20, 2–17.

  • Bell, J., Saunders, M. I., Leon, J. X., Mills, M., Kythreotis, A., Phinn, S., et al. (2014). Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science & Policy, 44, 247–257.

    Article  Google Scholar 

  • Belušić, D., Grisogono, B., & Bencetić Klaić, Z. (2007a). Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. Journal of Geophysical Research, 112, D17111. doi:10.1029/2006JD008204.

    Article  Google Scholar 

  • Belušić, D., & Strelec Mahović, N. (2009). Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Physics and Chemistry of the Earth, 34, 918–927.

    Article  Google Scholar 

  • Belušić, D., Žagar, M., & Grisogono, B. (2007b). Numerical simulation of pulsations in the bora wind. Quarterly Journal of the Royal Meteorological Society, 133, 1371–1388.

    Article  Google Scholar 

  • Bertotti, L., Bidlot, J.-R., Buizza, R., Cavaleri, L., & Janousek, M. (2011). Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to ‘acqua alta’ in Venice. Quarterly Journal of the Royal Meteorological Society, 137, 1446–1466.

    Article  Google Scholar 

  • Bilajbegović, A., & Marchesini, C. (1991). Yugoslav vertical datums and preliminary connections of Yugoslav, Austrian and Italian levelling networks (in Croatian). Geodetski list, 7(9), 233–248.

    Google Scholar 

  • Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2, 488–491.

    Article  Google Scholar 

  • Bock, Y., Wdowinski, S., Ferretti, A., Novali, F., & Fumagalli, A. (2012). Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 13, Q03023. doi:10.1029/2011GC003976.

    Google Scholar 

  • Bondesan, M., Castiglioni, G. B., Elmi, C., Gabbianelli, G., Marocco, R., Pirazzoli, P. A., et al. (1995). Coastal areas at risk from storm surges and sea-level rise in northeastern Italy. Journal of Coastal Research, 11, 1354–1379.

    Google Scholar 

  • Book, J. W., Perkins, H., & Wimbush, M. (2009). North Adriatic tides: Observations, variational data assimilation modeling, and linear tide dynamics. Geofizika, 26, 115–143.

    Google Scholar 

  • Bozzi Zadro, M., & Poretti, G. (1971). Analisi degli spettri complessi delle maree marine registrate a Trieste. Geofisica e Meteorologia, 20, 83–88.

    Google Scholar 

  • Bregant, K., Sušnik, M., Strojan, I., & Shaw, A. G. P. (2005). Sea level variability at Adriatic coast and its relationship to atmospheric forcing. Annales Geophysicae, 23, 1997–2010.

    Article  Google Scholar 

  • Buble, G., Bennett, R. A., & Hreinsdóttir, S. (2010). Tide gauge and GPS measurements of crustal motion and sea level rise along the eastern margin of Adria. Journal of Geophysical Research, 115, B02404. doi:10.1029/2008JB006155.

    Article  Google Scholar 

  • Bučić, G. (1861). Hoehe des Meeresspiegels und des Luftdruckes. Uebersichten der Witterung in Oesterreich und einigen Auswaertigen Stationen im Jahre, 1860, 47–48.

    Google Scholar 

  • Calafat, F. M., Avgoustoglou, E., Jorda, G., Flocas, H., Zodiatis, G., Tsimplis, M. N., et al. (2014). The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. Journal of Geophysical Research, 119, 7840–7853.

    Google Scholar 

  • Calafat, F. M., & Gomis, D. (2009). Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global and Planetary Change, 66, 225–234.

    Article  Google Scholar 

  • Calafat, F. M., Jordà, G., Marcos, M., & Gomis, D. (2012). Comparison of Mediterranean sea level variability as given by three baroclinic models. Journal of Geophysical Research, 117, C02009. doi:10.1029/2011JC007277.

    Google Scholar 

  • Caloi, P. (1938). Sesse dell’alto Adriatico con particolare riguardo al Golfo di Trieste. Memorie, R. Comitato Talassografico Italiano, 247, 1–39.

    Google Scholar 

  • Camuffo, D., & Sturaro, G. (2003). Sixty-CM submersion of Venice discovered thanks to Canaletto’s paintings. Climatic Change, 58, 333–343.

    Article  Google Scholar 

  • Candela, J. (1991). The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dynamics of Atmosphere and Oceans, 15, 267–299.

    Article  Google Scholar 

  • Carillo, A., Sannino, G., Artale, V., Ruti, P. M., Calmanti, S., & Dell’Aquila, A. (2012). Steric sea level rise over the Mediterranean Sea: Present climate and scenario simulations. Climate Dynamics, 39, 2167–2184.

    Article  Google Scholar 

  • Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G., et al. (2010). Predictability of extreme meteo-oceanographic events in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 136, 400–413.

    Google Scholar 

  • Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4, 358–361.

    Article  Google Scholar 

  • Cazenave, A., & Le Cozannet, G. (2014). Sea level rise and its coastal impacts. Earths Future, 2, 15–34.

    Article  Google Scholar 

  • Cerovečki, I., & Orlić, M. (1989). Modeling residual sea levels of the Bakar Bay (in Croatian). Geofizika, 6, 37–57.

    Google Scholar 

  • Cerovečki, I., Orlić, M., & Hendershott, M. C. (1997). Adriatic seiche decay and energy loss to the Mediterranean. Deep-Sea Research I, 44, 2007–2029.

    Article  Google Scholar 

  • Chavanne, C., Janeković, I., Flament, P., Poulain, P.-M., Kuzmić, M., & Gurgel, K.-W. (2007). Tidal currents in the northwestern Adriatic: High-frequency radio observations and numerical model predictions. Journal of Geophysical Research, 112, C03S21. doi:10.1029/2006JC003523.

    Article  Google Scholar 

  • Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Churchill, D. D., Houston, S. H., & Bond, N. A. (1995). The Daytona Beach wave of 3–4 July 1992: A shallow water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society, 76, 21–32.

    Article  Google Scholar 

  • Conte, D., & Lionello, P. (2013). Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Global and Planetary Change, 111, 159–173.

    Article  Google Scholar 

  • Cushman-Roisin, B., & Naimie, C. E. (2002). A 3d finite-element model of the Adriatic tides. Journal of Marine Systems, 37, 279–297.

    Article  Google Scholar 

  • Cushman-Roisin, B., Willmott, A. J., & Biggs, N. R. T. (2005). Influence of stratification on decaying surface seiche modes. Continental Shelf Research, 25, 227–242.

    Article  Google Scholar 

  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., et al. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change – Human and Policy Dimensions, 18, 598–606.

    Article  Google Scholar 

  • De Vries, H., Breton, M., De Mulder, T., Krestenitis, Y., Ozer, J., Proctor, R., et al. (1995). A comparison of 2D storm surge models applied to three shallow European seas. Environmental Software, 10, 23–42.

    Article  Google Scholar 

  • De Zolt, S., Lionello, P., Nuhu, A., & Tomasin, A. (2006). The disastrous storm of 4 November 1966 on Italy. Natural Hazards and Earth System Sciences, 6, 861–879.

    Article  Google Scholar 

  • Defant, A. (1911). Ueber die Periodendauer der Eigenschwingungen des Adriatischen Meeres. Annalen der Hydrographie und Maritimen Meteorologie, 39, 119–130.

    Google Scholar 

  • Defant, A. (1961). Physical oceanography (Vol. II). Oxford: Pergamon Press.

    Google Scholar 

  • Di Donato, G., Negredo, A. M., Sabadini, R., & Vermerrsen, L. L. A. (1999). Multiple processes causing sea-level rise in the Central Mediterranean. Geophysical Research Letters, 26, 1769–1772.

    Article  Google Scholar 

  • Donati, V. (1758). Essai sur l’Histoire Naturelle de la Mer Adriatique. La Haye: Pierre de Hondt.

  • Douglas, B. C. (1992). Global sea level acceleration. Journal of Geophysical Research, 97(C8), 12699–12706.

    Article  Google Scholar 

  • Douglas, B. C. (1997). Global sea level rise: A redetermination. Surveys in Geophysics, 18, 279–292.

    Article  Google Scholar 

  • Dovier, A., Manca, B., & Mosetti, F. (1974). I periodi di oscillazione del Golfo di Trieste calcolati con un nuovo metodo. Rivista Italiana di Geofisica, 23, 64–70.

    Google Scholar 

  • Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell’Aquilla, A., et al. (2012). Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dynamics, 39, 1859–1884.

    Article  Google Scholar 

  • Dunić, N., Vilibić, I., Šepić, J., Somot, S., & Sevault, F. (2016). Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model. Climate Dynamics, in press. doi:10.1007/s00382-016-3310-5.

    Google Scholar 

  • Dusterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L., et al. (2016). Palaeo-sea-level and palaeo-ice-sheet databases: Problems, strategies, and perspectives. Climate of the Past, 12, 911–921.

    Article  Google Scholar 

  • Emery, K. O., & Aubrey, D. G. (1991). Sea levels, land levels, and tide gauges. New York: Springer.

    Book  Google Scholar 

  • Enzi, S., & Camuffo, D. (1995). Documentary sources of the sea surges in Venice from AD 787 to 1867. Natural Hazards, 12, 225–287.

    Google Scholar 

  • Faivre, S., Bakran-Petricioli, T., & Horvatinčić, N. (2010). Relative sea-level change during the Late Holocene on the Island of Vis (Croatia)—Issa Harbour archaeological site. Geodinamica Acta, 23, 209–223.

    Article  Google Scholar 

  • Faivre, S., Bakran-Petricioli, T., Horvatinčić, N., & Sironić, A. (2013). Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—influence of climatic variations? Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 163–174.

    Article  Google Scholar 

  • Faivre, S., Fouache, E., Ghilardi, M., Antonioli, F., Furlani, S., & Kovačić, V. (2011). Relative sea level change in western Istria (Croatia) during the last millennium. Quaternary International, 232, 132–143.

    Article  Google Scholar 

  • Feng, X. B., Tsimplis, M. N., Marcos, M., Calafat, F. M., Zheng, J. H., Jorda, G., et al. (2015). Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific. Journal of Geophysical Research, 120, 7091–7112.

    Google Scholar 

  • Feng, H., & Vandemark, D. (2011). Altimeter data evaluation in the coastal Gulf of Maine and Mid-Atlantic Bight regions. Marine Geodesy, 34, 340–363.

    Article  Google Scholar 

  • Fenoglio-Marc, L., Braitenberg, C., & Tunini, L. (2012). Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, 40–41, 47–58.

    Article  Google Scholar 

  • Fenoglio-Marc, L., Kusche, J., & Becker, M. (2006). Mass variation in the Mediterranean Sea from GRACE and its validation by altimetry, steric and hydrologic fields. Geophysical Research Letters, 33, L19606. doi:10.1029/2006GL026851.

    Article  Google Scholar 

  • Ferla, M., Cordella, M., Michielli, L., & Rusconi, L. (2007). Long-term variations on sea level and tidal regime in the lagoon of Venice. Estuarine, Coastal and Shelf Science, 75, 214–222.

    Article  Google Scholar 

  • Flemming, N. C. (1969). Archaeological evidence for eustatic changes of sea level and earth movements in the Western Mediterranean in the last 2000 years. Geological Society of America Special Paper, 109, 1–125.

    Article  Google Scholar 

  • Florido, E., Auriemma, R., Faivre, S., Radić Rossi, I., Antonioli, F., Furlani, S., et al. (2011). Istrian and Dalmatian fishtanks as sea-level markers. Quaternary International, 232, 105–113.

    Article  Google Scholar 

  • Fortis, A. (1774). Viaggio in Dalmazia. Venezia: A. Milocco.

  • Fouache, E., Faivre, S., Gluščević, S., Kovačić, V., Tassaux, F., & Dufaure, J. (2006). Evolution on the Croatian shore line between Poreč and Split over the past 2000 years. Archaeologia Maritima Mediterranea—An International Journal on Underwater Archaeology, 2, 115–134.

    Google Scholar 

  • Fukumori, I., Menemenlis, D., & Lee, T. (2007). A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. Journal of Physical Oceanography, 37, 338–358.

    Article  Google Scholar 

  • Furlani, S., Biolchi, S., Cucchi, F., Antonioli, F., Busetti, M., & Melis, R. (2011). Tectonic effects on Late Holocene sea level changes in the Gulf of Trieste (NE Adriatic Sea, Italy). Quaternary International, 232, 144–157.

    Article  Google Scholar 

  • Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608. doi:10.1029/2010GL043216.

    Article  Google Scholar 

  • Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E., Sánchez, E., et al. (2007). Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34, L14711. doi:10.1029/2007GL029977.

    Article  Google Scholar 

  • Galassi, G., & Spada, G. (2014). Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Global and Planetary Change, 123, 55–66.

    Article  Google Scholar 

  • Galilei, G. (1632). Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano. Fiorenza: G. B. Landini.

  • García Lafuente, J., Alvarez Fanjul, E., Vargas, J. M., & Ratsimandresy, A. W. (2002). Subinertial variability in the flow through the Strait of Gibraltar. Journal of Geophysical Research, 107(C10), 3168. doi:10.1029/2001JC001104.

    Article  Google Scholar 

  • García, D., Vigo, I., Chao, B. F., & Martínez, M. C. (2007). Vertical crustal motion along the Mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data. Pure and Applied Geophysics, 164, 851–863.

    Article  Google Scholar 

  • Garrett, C. (1983). Variable sea level and strait flows in the Mediterranean: A theoretical study of the response to meteorological forcing. Oceanologica Acta, 6, 79–87.

    Google Scholar 

  • Garrett, C., & Majaess, F. (1984). Nonisostatic response of sea level to atmospheric pressure in the eastern Mediterranean. Journal of Physical Oceanography, 14, 656–665.

    Article  Google Scholar 

  • Gill, A. E., & Niiler, P. P. (1973). The theory of the seasonal variability in the ocean. Deep-Sea Research, 20, 141–177.

    Google Scholar 

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.

    Article  Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.

    Article  Google Scholar 

  • Godin, G., & Trotti, L. (1975). Trieste, water levels 1952–1971: A study of the tide, mean level and seiche activity. Fisheries and Marine Service in Ottawa, Miscellaneous Special Publication, 28, 1–24.

    Google Scholar 

  • Goldberg, J., & Kempni, K. (1937). Ueber die Schwingungen der Bucht von Bakar und das allgemeine Problem der Seiches von Buchten. Bulletin International de l’Académie Yougoslave des Sciences et des Beaux-Arts, Classe des Sciences Mathématiques et Naturelles, 31, 74–136.

    Google Scholar 

  • Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., & Terradas, J. (2008). Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Global and Planetary Change, 63, 215–229.

    Article  Google Scholar 

  • Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Pérez, B., Raicich, F., et al. (2012). Mediterranean sea-level variability and trends. In P. Lionello (Ed.), The climate of the Mediterranean Region: From past to the future (pp. 257–299). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gratzl, A. (1891). Ueber die durch Boeen verursachten stehenden Wellen (Seiches) im Hafen von Pola und in der Bucht von Triest. Meteorologische Zeitschrift, 8, 309–310.

    Google Scholar 

  • Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A, 61, 1–16.

    Article  Google Scholar 

  • Grund, A. (1907). Die Entstehung und Geschichte des Adriatischen Meeres. Geographischer Jahresbericht aus Oesterreich, 7, 1–14.

    Google Scholar 

  • Gualdi, S., Somot, S., Wilhelm, M., Castellari, S., Déqué, M., Adani, M., Artale, V., Bellucci, A., Breitgand, J.S., Carillo, A., Cornes, R., Dell’Aquila, A., Dubois, C., Efthymiadis, D., Elizalde, A., Gimeno, L., Goodess, C.M., Harzallah, A., Krichak, S.O., Kuglitsch, F.G., Leckebusch, G.C., L’Hévéder, B., Li, L., Lionello, P., Luterbacher, J., Mariotti, A., Navarra, A., Nieto, R., Nissen, K.M., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., Struglia, M.V., Toreti, A., Ulbrich, U., & Xoplaki, E. (2013). Future climate projections. In A. Navarra, & L. Tubiana, (Eds.), Regional assessment of the climate change in the Mediterranean: Air, sea and precipitation and water, Advances in Global Change Research, Vol. 50 (pp. 53–118). Heidelberg: Springer.

  • Guidoboni, E., & Tinti, S. (1988). A review of the historical 1627 tsunami in the Southern Adriatic. Science of Tsunami Hazards, 1, 11–16.

    Google Scholar 

  • Hendershott, M. C., & Speranza, A. (1971). Co-oscillating tides in long, narrow bays; the Taylor problem revisited. Deep Sea Research, 18, 959–980.

    Google Scholar 

  • Herak, M., Orlić, M., & Kunovec-Varga, M. (2001). Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago? Journal of Geodynamics, 31, 71–86.

    Article  Google Scholar 

  • Hibiya, T., & Kajiura, K. (1982). Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographic Society of Japan, 38, 172–182.

    Article  Google Scholar 

  • Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., & Peijun, S. (2015). Sea-level rise scenarios and coastal risk management. Nature Climate Change, 5, 188–190.

    Article  Google Scholar 

  • Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tole, R. S. J., et al. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292–3297.

    Article  Google Scholar 

  • Hodžić, M. (1979/1980). Occurrences of exceptional sea-level oscillations in the Vela Luka Bay (in Croatian). Priroda, 68, 52–53.

  • Janeković, I., Bobanović, J., & Kuzmić, M. (2003). The Adriatic Sea M2 and K1 tides by 3D model and data assimilation. Estuarine, Coastal and Shelf Science, 57, 873–885.

    Article  Google Scholar 

  • Janeković, I., & Kuzmić, M. (2005). Numerical simulation of the Adriatic Sea principal tidal constituents. Annales Geophysicae, 23, 1–12.

    Article  Google Scholar 

  • Janeković, I., Mihanović, H., Vilibić, I., & Tudor, M. (2014). Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. Journal of Geophysical Research, 119, 3200–3218.

    Google Scholar 

  • Jansà, A., Monserrat, S., & Gomis, D. (2007). The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Advances in Geosciences, 12, 1–4.

    Article  Google Scholar 

  • JCOMM (2010). Decision Matrix for the Mediterranean, Accessed on Nov 27, 2016 from http://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&docID=6422

  • Jönsson, B., Döös, K., Nycander, J., & Lundberg, P. (2008). Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches. Journal of Geophysical Research, 113, C03004. doi:10.1029/2006JC003862.

    Google Scholar 

  • Joó, I., Csáti, E., Jovanović, P., Popescu, M., Somov, V. I., Thurm, H., et al. (1981). Recent vertical crustal movements of the Carpatho-Balkan region. Tectonophysics, 71, 41–52.

    Article  Google Scholar 

  • Jordà, G., & Gomis, D. (2013). On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. Journal of Geophysical Research, 118, 953–963.

    Google Scholar 

  • Jordà, G., Gomis, D., Álvarez-Fanjul, E., & Somot, S. (2012). Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global and Planetary Change, 80–81, 198–214.

    Article  Google Scholar 

  • Karabeg, M., & Orlić, M. (1982). The influence of air pressure on sea level in the North Adriatic—a frequency-domain approach. Acta Adriatica, 23, 21–27.

    Google Scholar 

  • Kasumović, M. (1958). Ueber die Wirkung des Luftdrucks und des Windes auf die Wasserstandschwankungen in der Adria (in Kroatisch). Hidrografski godišnjak, 1956(1957), 107–121.

    Google Scholar 

  • Kasumović, M. (1963). Langperiodische Freie Schwingungen in der Adria (in Kroatisch). Rasprave odjela za matematičke, fizičke i tehničke nauke JAZU, 2(4), 121–166.

    Google Scholar 

  • Kasumović, M. (1968). Histoire du développement de la théorie des marées dans la mer Adriatique. Bulletin, Institut océanographique, Monaco, 2, 55–62.

    Google Scholar 

  • Kesslitz, W. (1910). Das Gezeitenphaenomen im Hafen von Pola. Mitteilungen aus dem Gebiete des Seewesens, 38, 445–608.

    Google Scholar 

  • Kesslitz, W. (1911). Die Sturmflut am 15. und 16. November 1910 in Pola. Mitteilungen aus dem Gebiete des Seewesens, 39, 157–163.

    Google Scholar 

  • Kesslitz, W. (1919). Die Gezeitenerscheinungen in der Adria, I. Teil, Die Beobachtungsergebnisse der Flutstationen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 175–275.

    Google Scholar 

  • King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., & Riva, R. E. M. (2012). Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophysical Research Letters, 39, L14604. doi:10.1029/2012GL052348.

    Article  Google Scholar 

  • Kuzmić, M., Grisogono, B., Li, X. M., & Lehner, S. (2015). Examining deep and shallow Adriatic bora events. Quarterly Journal of the Royal Meteorological Society, 141, 3434–3438.

    Article  Google Scholar 

  • Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., et al. (2011). Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232, 250–257.

    Article  Google Scholar 

  • Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea level change along the Italian coast for the past 10,000 yrs. Quaternary Science Reviews, 23, 1567–1598.

    Article  Google Scholar 

  • Lambeck, K., & Purcell, A. (2005). Sea-level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews, 24, 1969–1988.

    Article  Google Scholar 

  • Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters, 40, 553–557.

    Article  Google Scholar 

  • Larnicol, G., Ayoub, N., & Le Traon, P. Y. (2002). Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. Journal of Marine Systems, 33(34), 63–89.

    Article  Google Scholar 

  • Lascaratos, A., & Gačić, M. (1990). Low-frequency sea level variability in the northeastern Mediterranean. Journal of Physical Oceanography, 20, 522–533.

    Article  Google Scholar 

  • Le Traon, P.-Y., & Gauzelin, P. (1997). Response of the Mediterranean mean sea level to atmospheric pressure forcing. Journal of Geophysical Research, 102(C1), 973–984.

    Article  Google Scholar 

  • Leder, N., & Orlić, M. (2004). Fundamental Adriatic seiche recorded by current meters. Annales Geophysicae, 22, 1449–1464.

    Article  Google Scholar 

  • Levermann, A., Griesel, A., Hofmann, M., Montoya, M., & Rahmstorf, S. (2005). Dynamic sea level changes following changes in the thermohaline circulation. Climate Dynamics, 24, 347–354.

    Article  Google Scholar 

  • Li, C., von Storch, J. S., & Marotzke, J. (2013). Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics, 40, 1071–1086.

    Article  Google Scholar 

  • Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., & Ulbrich, U. (2012a). Severe marine storms in the Northern Adriatic: Characteristics and trends. Physics and Chemistry of the Earth, 40–41, 93–105.

    Article  Google Scholar 

  • Lionello, P., Galati, M. B., & Elvini, E. (2012b). Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Physics and Chemistry of the Earth, 40–41, 86–92.

    Article  Google Scholar 

  • Lionello, P., Mufato, R., & Tomasin, A. (2005). Sensitivity of free and forced oscillations of the Adriatic Sea to sea level rise. Climate Change, 29, 23–39.

    Google Scholar 

  • Lionello, P., Sanna, A., Elvini, E., & Mufato, R. (2006). A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea. Continental Shelf Research, 26, 539–553.

    Article  Google Scholar 

  • Lionello, P., Zampato, L., Malguzzi, P., Tomasin, A., & Bergamasco, A. (1998). On the correct surface stress for the prediction of the wind wave field and the storm surge in the Northern Adriatic Sea. Il Nuovo Cimento C, 21, 515–532.

    Google Scholar 

  • Lo Presti, V., Antonioli, F., Auriemma, R., Ronchitelli, A., Scicchitano, G., Spampinato, C. R., et al. (2014). Millstone coastal quarries of the Mediterranean: A new class of sea level indicator. Quaternary International, 332, 126–142.

    Article  Google Scholar 

  • Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemome, J. M., et al. (2007). Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary Science Letters, 254, 194–202.

    Article  Google Scholar 

  • Lončar, G., Carević, D., & Paladin, M. (2010). The (im)possibility of reducing the meteotsunami amplitude by constructing protective breakwaters. Tehnički vjesnik—Technical Gazette, 17, 217–222.

    Google Scholar 

  • Lorbacher, K., Dengg, J., Boning, C. W., & Biastoch, A. (2010). Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic meridional overturning circulation. Journal of Climate, 23, 4243–4254.

    Article  Google Scholar 

  • Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M., & Stammer, D. (2012). Rapid barotrophic sea-level rise from ice-sheet melting scenarios. Journal of Geophysical Research, 117, C06003.

    Article  Google Scholar 

  • Lorenz, J. R. (1863). Physicalische Verhaeltnisse und Vertheilung der Organismen im Quarnerischen Golfe. Wien: Hof- und Staatsdruckerei.

    Google Scholar 

  • Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200, 574–588.

    Article  Google Scholar 

  • Lozano, C. J., & Candela, J. (1995). The M2 tide in the Mediterranean Sea: Dynamic analysis and data assimilation. Oceanologica Acta, 18, 419–441.

    Google Scholar 

  • Malačič, V., & Viezzoli, D. (2000). Tides in the northern Adriatic Sea—the Gulf of Trieste. Il Nuovo Cimento C, 23, 365–382.

    Google Scholar 

  • Malačič, V., Viezzoli, D., & Cushman-Roisin, B. (2000). Tidal dynamics in the northern Adriatic Sea. Journal of Geophysical Research, 105, 26265–26280.

    Article  Google Scholar 

  • Manca, B., Mosetti, F., & Zennaro, P. (1974). Analisi spettrale delle sesse dell’Adriatico. Bolletino di Geofisica Teorica ed Applicata, 16, 51–60.

    Google Scholar 

  • Maramai, A., Brizuela, B., & Graziani, L. (2014). The Euro-Mediterranean tsunami catalogue. Annals of Geophysics, 57, S0435. doi:10.4401/ag-6437.

    Google Scholar 

  • Maramai, A., Graziani, L., & Tinti, S. (2007). Investigation on tsunami effects in the central Adriatic Sea during the last century—a contribution. Natural Hazards and Earth System Sciences, 7, 15–19.

    Article  Google Scholar 

  • Marcos, M., Jordà, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a regional model under climate change scenarios. Global and Planetary Change, 77, 116–128.

    Article  Google Scholar 

  • Marcos, M., Monserrat, S., Medina, R., Orfila, A., & Olabarrieta, M. (2009a). External forcing of meteorological tsunamis at the coast of the Balearic Islands. Physics and Chemistry of the Earth, 34, 938–947.

    Article  Google Scholar 

  • Marcos, M., & Tsimplis, M. N. (2007). Variations of the seasonal sea level cycle in southern Europe. Journal of Geophysical Research, 112, C12011. doi:10.1029/2006JC004049.

    Article  Google Scholar 

  • Marcos, M., & Tsimplis, M. N. (2008). Comparison of AOGCMs in the Mediterranean Sea during the 21st century. Journal of Geophysical Research, 113, C12028. doi:10.1029/2008JC004820.

    Article  Google Scholar 

  • Marcos, M., Tsimplis, M. N., & Shaw, A. G. P. (2009b). Sea level extremes in southern Europe. Journal of Geophysical Research. doi:10.1029/2008JC004912.

    Google Scholar 

  • Marriner, M., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., et al. (2014). Post-Roman sea-level changes on Pag Island (Adriatic Sea): dating Croatia’s “enigmatic” coastal notch? Geomorphology, 221, 83–94.

    Article  Google Scholar 

  • Marzocchi, W., & Mulargia, F. (1996). Scale analysis to sort the different causes of mean sea level changes: An application to the northern Adriatic Sea. Geophysical Research Letters, 23, 1119–1122.

    Article  Google Scholar 

  • Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research, 118, 3999–4016.

    Google Scholar 

  • Massalin, A., Zampato, L., Papa, A., & Canestrelli, P. (2007). Data monitoring and sea level forecasting in the Venice Lagoon: The ICPSM’s activity. Bollettino di Geofisica Teorica ed Applicata, 48, 241–257.

    Google Scholar 

  • Mawdsley, R. J., Haigh, I. D., & Wells, N. C. (2015). Global secular changes in different tidal high water, low water and range levels. Earths Future, 3, 66–81.

    Article  Google Scholar 

  • Međugorac, I., Pasarić, M., & Orlić, M. (2015). Severe flooding along the eastern Adriatic coast: The case of 1 December 2008. Ocean Dynamics, 65, 817–830.

    Article  Google Scholar 

  • Mel, R., & Lionello, P. (2014a). Storm surge ensemble prediction for the city of Venice. Weather and Forecasting, 29, 1044–1057.

    Article  Google Scholar 

  • Mel, R., & Lionello, P. (2014b). Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dynamics, 64, 1803–1814.

    Article  Google Scholar 

  • Mel, R., & Lionello, P. (2016). Probabilistic dressing of a storm surge prediction in the Adriatic Sea. Advances in Meteorology, 2016, 3764519. doi:10.1155/2016/3764519.

    Article  Google Scholar 

  • Mel, R., Sterl, A., & Lionello, P. (2013). High resolution climate projection of storm surge at the Venetian coast. Natural Hazards and Earth System Sciences, 13, 1135–1142.

    Article  Google Scholar 

  • Mel, R., Viero, D. P., Carniello, L., Defina, A., & D’Alpaos, L. (2014). Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Advances in Water Resources, 71, 177–185.

    Article  Google Scholar 

  • Michelato, A., Mosetti, F., & Purga, N. (1985). Sea level oscillations in the Adriatic Sea computed by mathematical models. Bolletino di Geofisica Teorica ed Applicata, 3, 57–77.

    Google Scholar 

  • Michelato, A., Mosetti, R., & Viezzoli, D. (1983). Statistical forecasting of storm surges—An application to the Lagoon of Venice. Bollettino di Oceanologia Teorica ed Applicata, 1, 67–76.

    Google Scholar 

  • Mikolajewicz, U. (2011). Modeling Mediterranean ocean climate of the Last Glacial Maximum. Climate of the Past, 7, 161–180.

    Article  Google Scholar 

  • Milojević, B. Ž. (1926). The Murter Island (in Serbian). Glasnik geografskog društva, 12, 65–74.

    Google Scholar 

  • Minisini, D., Trincardi, F., & Asioli, A. (2006). Evidence of slope instability in the Southwestern Adriatic Margin. Natural Hazards and Earth System Sciences, 6, 1–20.

    Article  Google Scholar 

  • Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.

    Article  Google Scholar 

  • Mosetti, F. (1961). Sulla tendenza secolare del livello medio marino a Trieste. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, Classe di Scienze Matematiche e Naturali, 119, 425–434.

    Google Scholar 

  • Mosetti, F., & Bartole, R. (1974). Esame dell’effetto del vento sui sollevamenti di livello dell’Adriatico settentrionale. Rivista Italiana di Geofisica, 23, 71–74.

    Google Scholar 

  • Mosetti, F., Crisciani, F., & Ferraro, S. (1989). On the relation between sea level and air temperature. Bollettino di oceanologia teorica ed applicata, 7, 263–272.

    Google Scholar 

  • Mosetti, F., & Purga, N. (1983). Free oscillations of the Adriatic Sea. Comparison and discussion of some results by old models and recent experimental investigations. Bolletino di Oceanologia Teorica ed Applicata, 1, 277–310.

    Google Scholar 

  • Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.

    Article  Google Scholar 

  • Nicolich, R. (2010). Geophysical investigation of the crust of the Upper Adriatic and neighbouring chains. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 21(Suppl. 1), S15–S30.

    Article  Google Scholar 

  • Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014. Philosophical Transactions of the Royal Society A, 373, 20140370. doi:10.1098/rsta.2014.0370.

    Article  Google Scholar 

  • Okihiro, M., Guza, R. T., & Seymour, R. J. (1993). Excitation of seiche observed in a small harbour. Journal of Geophysical Research, 98, 18201–18211.

    Article  Google Scholar 

  • Orlić, M. (1980). About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica, 16, 79–88.

    Google Scholar 

  • Orlić, M. (1983). On the frictionless influence of planetary atmospheric waves on the Adriatic Sea level. Journal of Physical Oceanography, 13, 1301–1306.

    Article  Google Scholar 

  • Orlić, M. (1983/1984). Are there tsunamis in the Adriatic? (in Croatian). Priroda, 72, 310–311.

  • Orlić, M. (1993). A simple model of buoyancy-driven seasonal variability in the oceans. Bollettino di Oceanologia Teorica ed Applicata, 11, 93–101.

    Google Scholar 

  • Orlić, M. (2001). Anatomy of sea level variabilityand example from the Adriatic. In F. El-Hawary, (Ed.), The ocean engineering handbook (pp. 1.1–1.14). London: CRC Press.

    Google Scholar 

  • Orlić, M. (2015). The first attempt at cataloguing tsunami-like waves of meteorological origin in Croatian coastal waters. Acta Adriatica, 56, 83–96.

    Google Scholar 

  • Orlić, M., Belušić, D., Janeković, I., & Pasarić, M. (2010). Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. Journal of Geophysical Research, 115, C06011. doi:10.1029/2009JC005777.

    Article  Google Scholar 

  • Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14, 91–116.

    Article  Google Scholar 

  • Orlić, M., & Pasarić, M. (1994). Adriatic Sea level and global climatic changes (in Croatian). Pomorski zbornik, 32, 481–501.

    Google Scholar 

  • Orlić, M., & Pasarić, M. (1997). Seven decades of sea-level measurements in the Bakar Bay (in Croatian). Natural History Researches of the Rijeka region, Natural History Library, Rijeka, 1, 201–209.

    Google Scholar 

  • Orlić, M., & Pasarić, M. (2000). Sea-level changes and crustal movements recorded along the east Adriatic coast. Il Nuovo Cimento C, 23, 351–364.

    Google Scholar 

  • Orlić, M., & Pasarić, M. (2013a). Is the Mediterranean Sea level rising again? Rapports et procès-verbaux des réunions CIESMM, 40, 205.

    Google Scholar 

  • Orlić, M., & Pasarić, Z. (2013b). Semi-empirical versus process-based sea-level projections for the twenty-first century. Nature Climate Change, 3, 735–738.

    Article  Google Scholar 

  • Orlić, M., & Pasarić, Z. (2015). Some pitfalls of the semiempirical method used to project sea level. Journal of Climate, 28, 3779–3785.

    Article  Google Scholar 

  • Pagliarulo, R., Antonioli, F., & Anzidei, M. (2013). Sea level changes since the Middle Ages along the coast of the Adriatic Sea: The case of St. Nicholas Basilica, Bari. Southern Italy. Quaternary International, 288, 139–145.

    Google Scholar 

  • Palumbo, A., & Mazzarella, A. (1982). Mean sea level variations and their practical applications. Journal of Geophysical Research, 87, 4249–4265.

    Article  Google Scholar 

  • Pasarić, M., Brizuela, B., Graziani, L., Maramai, A., & Orlić, M. (2012). Historical tsunamis in the Adriatic Sea. Natural Hazards, 61, 281–316.

    Article  Google Scholar 

  • Pasarić, M., & Orlić, M. (1992). Response of the Adriatic Sea level to the planetary-scale atmospheric forcing. In P. L. Woodworth, (Ed.), Sea level changes—determination and effects, geophysical monograph, vol. 69, pp. 29–39. Washington: American Geophysical Union.

  • Pasarić, M., & Orlić, M. (2001). Long-term meteorological preconditioning of the North Adriatic coastal floods. Continental Shelf Research, 21, 263–278.

    Article  Google Scholar 

  • Pasarić, M., & Orlić, M. (2004). Meteorological forcing of the Adriatic—present vs. projected climate conditions. Geofizika, 21, 69–87.

    Google Scholar 

  • Pasarić, M., Pasarić, Z., & Orlić, M. (2000). Response of the Adriatic Sea level to the air pressure and wind forcing at low frequencies (0.01–0.1 cpd). Journal of Geophysical Research, 105, 11423–11439.

    Article  Google Scholar 

  • Pasquali, D., Di Risio, M., & De Girolamo, P. (2015). A simplified real time method to forecast semi-enclosed basins storm surge. Estuarine, Coastal and Shelf Science, 165, 61–69.

    Article  Google Scholar 

  • Patritius, F. (1591). Nova de universis philosophia. Ferrara: B. Mammarelli.

  • Pattiaratchi, C. B., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions of the Royal Society A, 373, 20140377. doi:10.1098/rsta.2014.0377.

    Article  Google Scholar 

  • Pattullo, J., Munk, W., Revelle, R., & Strong, E. (1955). The seasonal oscillation in sea level. Journal of Marine Research, 14, 88–155.

    Google Scholar 

  • Paulatto, M., Pinat, T., & Romanelli, F. (2007). Tsunami hazard scenarios in the Adriatic Sea domain. Natural Hazards and Earth System Sciences, 7, 309–325.

    Article  Google Scholar 

  • Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research, 120, 450–487.

    Google Scholar 

  • Penzar, B., Orlić, M., & Penzar, I. (1980). Sea-level changes in the Adriatic as a consequence of some wave occurrences in the atmosphere. Thalassia Jugoslavica, 16, 51–77.

    Google Scholar 

  • Petaccia, S., Serravall, R., & Pellicano, F. (2006). Improved method of sea level forecasting at Venice (Northern Adriatic Sea). Communications in Nonlinear Science and Numerical Simulation, 11, 281–296.

    Article  Google Scholar 

  • Pickering, M. D., Wells, N. C., Horsburgh, K. J., & Green, J. A. M. (2012). The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1–15.

    Article  Google Scholar 

  • Piecuch, C. G., & Ponte, R. M. (2015). Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophysical Research Letters, 42, 5918–5925.

    Article  Google Scholar 

  • Pinardi, N., Bonaduce, A., Navarra, A., Dobricic, S., & Oddo, P. (2014). The mean sea level equation and its application to the Mediterranean Sea. Journal of Climate, 27, 442–447.

    Article  Google Scholar 

  • Pirazzoli, P. A. (1986). Secular trends of relative sea-level (RSL) changes indicated by tide-gauge records. Journal of Coastal Research, SI1, 1–26.

    Google Scholar 

  • Pirazzoli, P. A. (2005). A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quaternary Science Reviews, 24, 1989–2001.

    Article  Google Scholar 

  • Pirazzoli, P. A., & Tomasin, A. (2002). Recent evolution of surge-related events in the northern Adriatic area. Journal of Coastal Research, 18, 537–554.

    Google Scholar 

  • Pirazzoli, P. A., & Tomasin, A. (2007/2008). Sea level and surges in the Adriatic Sea area: Recent trends and possible near-future scenarios. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 166, 61–83.

  • Planton, S., Lionello, P., Artale, V., Aznar, R., Carillo, A., Colin, J., et al. (2012). Modelling of the Mediterranean climate system. In P. Lionello (Ed.), Mediterranean climate variability (pp. 449–502). Amsterdam: Elsevier.

    Google Scholar 

  • Polli, S. (1938). Livelli medi, capisaldi di livellazione e ampiezze della marea nel porto di Trieste. Memorie, R. Comitato Talassografico Italiano, 253, 1–27.

    Google Scholar 

  • Polli, S. (1947). Analisi periodale delle serie dei livelli marini di Trieste e Venezia. Rivista di Geofisica Pura ed Applicata, 10, 29–40.

    Google Scholar 

  • Polli, S. (1959). La propagazione delle maree nell’Adriatico. IX Convegno della Associazione Geofisica Italiana, Associazione Geofisica Italiana, Roma, 1959, 1–11.

    Google Scholar 

  • Pugh, D. T. (1987). Tides, surges and mean sea-level: A handbook for engineers and scientists. Chichester: Wiley.

    Google Scholar 

  • Rabinovich, A. B. (2009). Seiches and harbour oscillations. In Y. C. Kim, (Ed.), Handbook of coastal and ocean engineering (pp. 193–236). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Radić Rossi, I. (2012). Underwater cultural heritage and maritime archaeology in Croatia: An overview. European Journal of Archaeology, 15, 285–308.

    Article  Google Scholar 

  • Raicich, F. (2003). Recent evolution of sea-level extremes at Trieste (Northern Adriatic). Continental Shelf Research, 23, 225–235.

    Article  Google Scholar 

  • Raicich, F. (2010). On the contributions of atmospheric pressure and wind to daily sea level in the northern Adriatic Sea. Continental Shelf Research, 30, 1575–1581.

    Article  Google Scholar 

  • Raicich, F. (2015). Long-term variability of storm surge frequency in the Venice Lagoon: An update thanks to 18th century sea level observations. Natural Hazards and Earth System Sciences, 15, 527–535.

    Article  Google Scholar 

  • Raicich, F., Orlić, M., Vilibić, I., & Malačič, V. (1999). A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C, 22, 715–726.

    Google Scholar 

  • Renault, L., Vizoso, G., Jansà, A., Wilkin, J., & Tintoré, J. (2011). Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophysical Research Letters, 38, L10601. doi:10.1029/2011GL047361.

    Article  Google Scholar 

  • Rožić, N. (2001). Fundamental levelling networks and height datums at the territory of the Republic of Croatia. Acta Geodaetica et Geophysica Hungarica, 36, 231–243.

    Article  Google Scholar 

  • Rožić, N. (2015). Kinematic models of recent motion of the Earth’s crust on the territory of Croatia, Slovenia and Bosnia and Herzegovina. Geofizika, 32, 209–236.

    Article  Google Scholar 

  • Scarascia, L., & Lionello, P. (2013). Global and regional factors contributing to the past and future sea level rise in the Adriatic Sea. Global and Planetary Change, 106, 51–63.

    Article  Google Scholar 

  • Schwab, D. J., & Rao, D. B. (1983). Barotropic oscillations of the Mediterranean and Adriatic Seas. Tellus, 35(1), 417–427.

    Article  Google Scholar 

  • Šegota, T. (1996). Sea level of the Adriatic Sea indicated by Bakar tide-gauge data (in Croatian). Geografski glasnik, 58, 15–32.

    Google Scholar 

  • Šepić, J., Međugorac, I., Janeković, I., Dunić, N., & Vilibić, I. (2016). Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014. Pure and Applied Geophysics. doi:10.1007/s00024-016-1249-4.

    Google Scholar 

  • Šepić, J., & Orlić, M. (2016). Meteorological tsunamis in the Adriatic Sea. http://www.izor.hr/meteotsunami. Accessed 20 July 2017.

  • Šepić, J., Orlić, M., & Vilibić, I. (2008). The Bakar Bay seiches and their relationship with atmospheric processes. Acta Adriatica, 49(2), 107–123.

    Google Scholar 

  • Šepić, J., & Vilibić, I. (2011). The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Natural Hazards and Earth System Sciences, 11, 83–91.

    Article  Google Scholar 

  • Šepić, J., Vilibić, I., & Belušić, D. (2009). The source of the 2007 Ist meteotsunami (Adriatic Sea). Journal of Geophysical Research. doi:10.1029/2008JC005092.

    Google Scholar 

  • Šepić, J., Vilibić, I., & Fine, I. (2015a). Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments. Journal of Geophysical Research, 120, 2993–3010.

    Google Scholar 

  • Šepić, J., Vilibić, I., Jordà, G., & Marcos, M. (2012). Mediterranean sea level forced by atmospheric pressure and wind: Variability of the present climate and future projections for several period bands. Global and Planetary Change, 86–87, 20–30.

    Article  Google Scholar 

  • Šepić, J., Vilibić, I., Lafon, A., Macheboeuf, L., & Ivanović, Z. (2015b). High-frequency sea level oscillations in the Mediterranean and their connection to synoptic patterns. Progress in Oceanography, 137, 284–298.

    Article  Google Scholar 

  • Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015c). Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 5, 11682.

    Article  Google Scholar 

  • Sguazzero, P., Giommoni, A., & Goldmann, A. (1972). An empirical model for the prediction of the sea level in Venice (25th ed.). Venice: IBM.

    Google Scholar 

  • Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrology, 86, 27–43.

    Article  Google Scholar 

  • Soloviev, S. L., Solovieva, O. N., Go, C. N., & Shchetnikov, N. A. (2000). Tsunamis in the Mediterranean sea 2000 B.C.—2000 A.D. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sorensen, C., Broge, N. H., Molgaard, M. R., Schow, C. S., Thomsen, P., Vognsen, K., et al. (2016). Assessing future flood hazards for adaptation planning in a northern European coastal community. Frontiers in Marine Science, 3, 69. doi:10.3389/fmars.2016.00069.

    Article  Google Scholar 

  • Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. Journal of Geophysical Research, 113, C06022. doi:10.1029/2006JC004079.

    Article  Google Scholar 

  • Sterneck, R. (1914). Ueber ‘Seiches’ an den Kuesten der Adria. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 123, 2199–2232.

    Google Scholar 

  • Sterneck, R. (1915). Zur hydrodynamischen Theorie der Adriagezeiten. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 124, 147–180.

    Google Scholar 

  • Sterneck, R. (1919). Die Gezeitenerscheinungen in der Adria, II. Teil, Die theoretische Erklaerung der Beobachtungs-Tatsachen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 277–324.

    Google Scholar 

  • Stocchi, P., & Spada, G. (2009). Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics, 474, 55–68.

    Article  Google Scholar 

  • Stocchi, P., Spada, G., & Cianetti, G. (2005). Isostatic rebound following the Alpine deglaciation: Impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 162, 137–147.

    Article  Google Scholar 

  • Stravisi, F. (1973). Analysis of a storm surge in the Adriatic Sea by means of a two-dimensional linear model. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 54, 243–260.

    Google Scholar 

  • Stravisi, F., & Ferraro, S. (1986). Monthly and annual mean sea levels at Trieste, 1890–1984. Bollettino di oceanologia teorica ed applicata, 4, 97–104.

    Google Scholar 

  • Surić, M., Korbar, T., & Juračić, M. (2014). Tectonic constraints on the late Pleistocene-Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology, 220, 93–103.

    Article  Google Scholar 

  • Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681–686.

    Article  Google Scholar 

  • Taylor, G. I. (1921). Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society, 2(20), 148–181.

    Google Scholar 

  • Teferle, F. N., Williams, S. D. P., Kierulf, H. P., Bingley, R. M., & Plag, H. P. (2008). A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, 33, 205–216.

    Article  Google Scholar 

  • Tiberti, M. M., Lorito, S., Basili, R., Kastelić, V., Piatanesi, A., & Valensis, G. (2008). Scenarios of earthquake-generated tsunamis for the Italian coast of the Adriatic Sea. Pure and Applied Geophysics, 165, 2117–2142.

    Article  Google Scholar 

  • Tinti, S., Graziani, L., Brizuela, B., Maramai, A., & Galazzi, S. (2012). Applicability of the decision matrix on the North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis. Natural Hazards and Earth System Sciences, 12, 843–857.

    Article  Google Scholar 

  • Tinti, S., & Maramai, A. (1999). Large tsunamis and tsunami hazard from the new Italian tsunami catalog. Physics and Chemistry of the Earth, 24, 151–156.

    Article  Google Scholar 

  • Tinti, S., Maramai, A., & Favali, P. (1995). The Gargano promontory: An important Italian seismogenic-tsunamigenic area. Marine Geology, 122, 227–241.

    Article  Google Scholar 

  • Tinti, S., Maramai, A., & Graziani, L. (2004). The new catalogue of the Italian tsunamis. Natural Hazards, 33, 439–465.

    Article  Google Scholar 

  • Tinti, S., & Piatanesi, A. (1996). Numerical simulations of the tsunami induced by the 1627 eartquake affecting Gargano, Southern Italy. Journal of Geodynamics, 21, 141–160.

    Article  Google Scholar 

  • Toaldo, T. (1977). De reciproco aestu Maris Veneti. Philosophical Transactions of the Royal Society of London, 67, 145–159.

    Google Scholar 

  • Tomasin, A., & Frassetto, R. (1979). Cyclogenesis and forecast of dramatic water elevations in Venice. In J. C. J. Nihoul (Ed.), Marine forecasting (pp. 427–438). Amsterdam: Elsevier.

    Google Scholar 

  • Tosi, L., Teatini, P., & Strozzi, T. (2013). Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3, 2710. doi:10.1038/srep02710.

    Article  Google Scholar 

  • Tosoni, A., & Canestrelli, P. (2010/2011). Il modelo stocatisco per la previsione di marea a Venezia. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 164, 65–86.

  • Trigo, I. F., & Davies, T. D. (2002). Meteorological conditions associated with sea surges in Venice: A 40 year climatology. International Journal of Climatology, 22, 787–803.

    Article  Google Scholar 

  • Tsimplis, M. N. (1995). The response of sea level to atmospheric forcing in the Mediterranean. Journal of Coastal Research, 11, 1309–1321.

    Google Scholar 

  • Tsimplis, M. N., Álvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., & Pérez, B. (2005). Mediterranean Sea level trends: Atmospheric pressure and wind contribution. Geophysical Research Letters, 32, L20602. doi:10.1029/2005GL023867.

    Article  Google Scholar 

  • Tsimplis, M. N., & Baker, T. F. (2000). Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophysical Research Letters, 27(12), 1731–1734.

    Article  Google Scholar 

  • Tsimplis, M. N., Calafat, F. M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. (2013). The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research, 118, 944–952.

    Google Scholar 

  • Tsimplis, M. N., & Josey, S. A. (2001). Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5), 803–806.

    Article  Google Scholar 

  • Tsimplis, M., Marcos, M., & Somot, S. (2008a). 21st century Mediterranean Sea level rise: Steric and atmospheric pressure contributions from a regional model. Global and Planetary Change, 63, 105–111.

    Article  Google Scholar 

  • Tsimplis, M., Marcos, M., Somot, S., & Barnier, B. (2008b). Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global and Planetary Change, 63, 325–332.

    Article  Google Scholar 

  • Tsimplis, M. N., Proctor, R., & Flather, R. (1995). A two-dimensional tidal model for the Mediterranean Sea. Journal of Geophysical Research, 100, 16223–16239.

    Article  Google Scholar 

  • Tsimplis, M. N., Raicich, F., Fenoglio-Marc, L., Shaw, A. G. P., Marcos, M., Somot, S., et al. (2012). Recent developments in understanding sea level rise at the Adriatic coasts. Physics and Chemistry of the Earth, 40–41, 59–71.

    Article  Google Scholar 

  • Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 2136. doi:10.1029/2002GL015870.

    Article  Google Scholar 

  • Tsimplis, M. N., & Spencer, N. E. (1997). Collection and analysis of monthly mean sea level data in the Mediterranean and the Black Sea. Journal of Coastal Research, 13, 534–544.

    Google Scholar 

  • Tsimplis, M. N., & Vlahakis, G. N. (1994). Meteorological forcing and sea level variability in the Aegean Sea. Journal of Geophysical Research, 99, 9879–9890.

    Article  Google Scholar 

  • Tsimplis, M. N., & Woodworth, P. L. (1994). The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research, 99, 16031–16039.

    Article  Google Scholar 

  • Tushingham, A. M., & Peltier, W. R. (1989). ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post glacial relative sea level change. Journal of Geophysical Research, 96, 4497–4523.

    Article  Google Scholar 

  • Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems, 51, 123–145.

    Article  Google Scholar 

  • Unal, Y. S., & Ghil, M. (1995). Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics, 11, 255–278.

    Article  Google Scholar 

  • UNESCO. (2009). Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and Connected Seas, NEAMTWS, Implementation Plan, Intergovernmental Oceanographic Commission Technical Series (p. 46). Paris: UNESCO.

    Google Scholar 

  • Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2015). Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172–197.

    Article  Google Scholar 

  • Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. Annals of Geophysics, 47, 247–306.

    Google Scholar 

  • Vera, J. D., Criado-Aldeanueva, F., Garcia-Lafuente, J., & Soto-Navarro, F. J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68, 232–235.

    Article  Google Scholar 

  • Vercelli, F. (1941). Le maree e le sesse nel porto di Zara. La Ricerca Scientifica, 12(1), 1–8.

    Google Scholar 

  • Vilibić, I., & Šepić, J. (2009). Destructive meteotsunamis along the eastern Adriatic coast: Overview. Physics and Chemistry of the Earth, 34, 904–917.

    Article  Google Scholar 

  • Vilibić, I. (2000). A climatological study of the uninodal seiche in the Adriatic Sea. Acta Adriatica, 41(2), 89–102.

    Google Scholar 

  • Vilibić, I. (2005). Numerical study of the Middle Adriatic coastal waters sensitivity to the various air pressure travelling disturbances. Annales Geophysicae, 23, 3569–3578.

    Article  Google Scholar 

  • Vilibić, I. (2006a). The role of the fundamental seiche in the Adriatic coastal floods. Continental Shelf Research, 26, 206–216.

    Article  Google Scholar 

  • Vilibić, I. (2006b). Seasonal sea level variations in the Adriatic. Acta Adriatica, 41(2), 141–158.

    Google Scholar 

  • Vilibić, I. (2008). Numerical simulations of the Proudman resonance. Continental Shelf Research, 28, 574–581.

    Article  Google Scholar 

  • Vilibić, I., Domijan, N., & Čupić, S. (2005a). Wind versus air pressure seiche triggering in the Middle Adriatic coastal waters. Journal of Marine Systems, 57, 189–200.

    Article  Google Scholar 

  • Vilibić, I., Domijan, N., Orlić, M., Leder, N., & Pasarić, M. (2004). Resonant coupling of a traveling air-pressure disturbance with the east Adriatic coastal waters. Journal of Geophysical Research, 109, C10001. doi:10.1029/2004JC002279.

    Article  Google Scholar 

  • Vilibić, I., Leder, N., & Smirčić, A. (2000). Storm surges in the Adriatic Sea: an impact on the coastal infrastructure. Periodicum Biologorum, 102(Suppl. ), 483–488.

    Google Scholar 

  • Vilibić, I., & Mihanović, H. (2002). A study of seiches in the Split harbour (Adriatic Sea). Acta Adriatica, 43(2), 59–68.

    Google Scholar 

  • Vilibić, I., & Mihanović, H. (2003). A study of resonant oscillations in the Split harbour (Adriatic Sea). Estuarine, Coastal and Shelf Science, 56, 861–867.

    Article  Google Scholar 

  • Vilibić, I., & Mihanović, H. (2005). Resonance in Ploče Harbor (Adriatic Sea). Acta Adriatica, 46(2), 125–136.

    Google Scholar 

  • Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., et al. (2017). Dense water formation in the coastal northeastern Adriatic Sea: The NAdEx 2015 experiment. Ocean Science Discussions. doi:10.5194/os-2017-6. (in review).

    Google Scholar 

  • Vilibić, I., Monserrat, S., Rabinovich, A. B., & Mihanović, H. (2008). Numerical modeling of a destructive meteotsunami that occurred on 15 June 2006 at the Balearic Islands. Pure and Applied Geophysics, 165, 2169–2195.

    Article  Google Scholar 

  • Vilibić, I., & Orlić, M. (1999). Surface seiches and internal Kelvin waves observed off Zadar (east Adriatic). Estuarine, Coastal and Shelf Science, 48, 125–136.

    Article  Google Scholar 

  • Vilibić, I., Orlić, M., Čupić, S., Domijan, N., Leder, N., Mihanović, H., et al. (2005b). A new approach to sea level observations in Croatia. Geofizika, 22, 21–57.

    Google Scholar 

  • Vilibić, I., & Šepić, J. (2010). Long-term variability and trends of sea level storminess and extremes in European Seas. Global and Planetary Change, 71, 1–12.

    Article  Google Scholar 

  • Vilibić, I., Šepić, J., Rabinovich, A. B., & Monserrat, S. (2016). Modern approaches in meteotsunami research and early warning. Frontiers in Marine Sciences, 3, 57. doi:10.3389/fmars.2016.00057.

    Google Scholar 

  • Vučetić, T., & Barčot, T. (2008). Zapisi o plimnom valu u Veloj Luci 21.06.1978. (in Croatian). Municipality of Vela Luka, Institute of Oceanography and Fisheries, Croatia, p. 80.

  • Vučetić, T., Vilibić, I., Tinti, S., & Maramai, A. (2009). The Great Adriatic flood of 21 June 1978 revisited: An overview of the reports. Physics and Chemistry of the Earth, 34, 894–903.

    Article  Google Scholar 

  • Wakelin, S. L., & Proctor, R. (2002). The impact of meteorology on modelling storm surges in the Adriatic Sea. Global and Planetary Change, 34, 97–119.

    Article  Google Scholar 

  • Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., & Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 5, 565–568.

    Article  Google Scholar 

  • Wolff, C., Vafeidis, A. T., Lincke, D., Marasmi, C., & Hinkel, J. (2016). Effects of scale and input data on assessing the future impacts of coastal flooding: An application of DIVA for the Emilia-Romagna coast. Frontiers in Marine Science, 3, 41. doi:10.3389/fmars.2016.00041.

    Article  Google Scholar 

  • Woodworth, P. L. (2003). Some comments on the long sea level records from the northern Mediterranean. Journal of Coastal Research, 19, 212–217.

    Google Scholar 

  • Woodworth, P. L., Aman, A., & Aarup, T. (2007). Sea level monitoring in Africa. African Journal of Marine Science, 29, 321–330.

    Article  Google Scholar 

  • Woodworth, P. L., Gravelle, M., Marcos, M., Wöppelmann, G., & Hughes, C. W. (2015). The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. Journal of Geodesy, 89, 811–827.

    Article  Google Scholar 

  • Wöppelmann, G., & Marcos, M. (2012). Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. Journal of Geophysical Research, 117, C01007. doi:10.1029/2011JC007469.

    Article  Google Scholar 

  • Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., & Altamimi, Z. (2007). Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global and Planetary Change, 57, 396–406.

    Article  Google Scholar 

  • Zampato, L., Bajo, M., Canestrelli, P., & Umgiesser, G. (2016). Storm surge modelling in Venice: two years of operational results. Journal of Operational Oceanography, 9, S46–S57.

    Article  Google Scholar 

  • Zampato, L., Umgiesser, G., & Zecchetto, S. (2006). Storm surge in the Adriatic Sea: observational and numerical diagnosis of an extreme event. Advances in Geosciences, 7, 371–378.

    Article  Google Scholar 

  • Zampato, L., Umgiesser, G., & Zecchetto, S. (2007). Sea level forecasting in Venice through high resolution meteorological fields. Estuarine, Coastal and Shelf Science, 75, 223–235.

    Article  Google Scholar 

  • Zanchettin, D., Traverso, P., & Tomasino, M. (2006). Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice. Global and Planetary Change, 50, 226–234.

    Article  Google Scholar 

  • Zecchetto, S., Umgiesser, G., & Brocchini, M. (1997). Hindcast of a storm surge induced by local real wind fields in the Venice Lagoon. Continental Shelf Research, 17, 1513–1538.

    Article  Google Scholar 

  • Zecchin, M., Gordini, E., & Ramella, R. (2015). Recognition of a drowned delta in the northern Adriatic Sea, Italy: Stratigraphic characteristics and its significance in the frame of the early Holocene sea-level rise. The Holocene, 25, 1027–1038.

    Article  Google Scholar 

  • Zerbini, S., Bruni, S., Errico, M., & Santi, E. (2015). Space geodetic activities, from the early days to present, with focus on the northeastern Adriatic. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 26(Suppl. 1), S43–S51.

    Article  Google Scholar 

  • Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2000). Twentieth-century storm activity along the US east coast. Journal of Climate, 13, 1748–1761.

    Article  Google Scholar 

  • Zore, M. (1960). Variations of the sea level along the eastern Adriatic coast and the system of gradient currents in the Adriatic (in Croatian). Hidrografski godišnjak, 1959, 59–65.

    Google Scholar 

  • Zore-Armanda, M. (1979). Destructive wave in the Adriatic. Rapport et Procès verbaux des Réunions du Conseil International pour l’Exploration Scientifique de la Mer Méditerranée, 25–26, 93–94.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation through Projects 2831 (CARE) and UKF 25/15 (MESSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Vilibić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilibić, I., Šepić, J., Pasarić, M. et al. The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies. Pure Appl. Geophys. 174, 3765–3811 (2017). https://doi.org/10.1007/s00024-017-1625-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1625-8

Keywords

Navigation