Skip to main content
Log in

A New Imaging Approach for Dipole–Dipole Time-Domain Electromagnetic Data Based on the q-Transform

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The inline dipole–dipole time-domain electromagnetic method is a useful supplementary tool for the exploration of a resistive target such as a hydrocarbon resource. Currently, the interpretation of the data from this configuration is based on the fitting of the modeled response and the recorded response in a least square sense. In the paper, we propose an imaging method based on a mathematical transformation named the q-transform, which could make the subsequent imaging of TEM data using the interpretation technique in seismic method possible. The imaging strategy is based on analytical derivation and analysis of the transformed wave-field from which pseudo-velocity and resistivity can be extracted. A numerical test is employed to get the transformed wave-field from the time-domain electromagnetic response with the selected regularization method. The proposed imaging method is tested on the synthetic data obtained from a homogeneous and layered half space models. The results reveal that it is a useful method to recover the resistivity of an underground medium and can provide an additional tool for fast and qualitative imaging of the subsurface resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aster, R. C., Borchers, B., & Thurber, C. H. (2011). Parameter estimation and inverse problems. London: Academic Press.

    Google Scholar 

  • Bragg, L., & Dettman, J. (1968). Related problems in partial differential equations. Bulletin of the American Mathematical Society, 74, 375–378.

    Article  Google Scholar 

  • Connell, D. (2011). A comparison of marine time-domain and frequency-domain controlled source electromagnetic methods. San Diego: University of California.

    Google Scholar 

  • Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.

    Article  Google Scholar 

  • Danielsen, J. E., Auken, E., Jørgensen, F., Søndergaard, V., & Sørensen, K. I. (2003). The application of the transient electromagnetic method in hydrogeophysical surveys. Journal of Applied Geophysics, 53, 181–198.

    Article  Google Scholar 

  • Filippi, P., & Frisch, U. (1969). Relation entre l’$ quation de la chaleur et l’$ quation des ondes de Helmholtz. Comptes Rendus Acad Sci, œ68-A(804), 807.

    Google Scholar 

  • Hai, L., Guo-qiang, X., Nan-nan, Z., & Wei-ying, C. (2015). Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure and Applied Geophysics, 172, 2917–2929.

    Article  Google Scholar 

  • Hansen, P. C. (2010). Discrete inverse problems: Insight and algorithms. London: Siam.

    Book  Google Scholar 

  • Key, K. (2016). MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophysical Journal International, 207, 571–588.

    Article  Google Scholar 

  • Lee, K. (1989). A new approach to interpreting electromagnetic-sounding data. Annual Report, 1988, 24–27.

    Google Scholar 

  • Lee, K. H., Liu, G., & Morrison, H. (1989). A new approach to modeling the electromagnetic response of conductive media. Geophysics, 54, 1180–1192.

    Article  Google Scholar 

  • Lee, T. J., Suh, J. H., Kim, H. J., Song, Y., & Lee, K. H. (2002). Electromagnetic traveltime tomography using an approximate wavefield transform. Geophysics, 67, 68–76.

    Article  Google Scholar 

  • Lee, T. J., & Uchida, T. (2005). Electromagnetic traveltime tomography: Application for reservoir characterization in the Lost Hills oil field, California. Geophysics, 70, G51–G58.

    Article  Google Scholar 

  • Lee, K. H., & Xie, G. (1993). A new approach to imaging with low-frequency electromagnetic fields. Geophysics, 58, 780–796.

    Article  Google Scholar 

  • Li, H., Xue, G.-Q., Zhou, N.-N., & Chen, W.-Y. (2015). Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure and Applied Geophysics, 172, 2917–2929.

    Article  Google Scholar 

  • Meier, P., Kalscheuer, T., Podgorski, J. E., Kgotlhang, L., Green, A. G., Greenhalgh, S., et al. (2014). Case History Hydrogeophysical investigations in the western and north-central Okavango Delta (Botswana) based on helicopter and ground-based transient electromagnetic data and electrical resistance tomography. Geophysics, 79, B201–B211.

    Article  Google Scholar 

  • Munkholm, M. S., & Auken, E. (1996). Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments. Journal of Environmental and Engineering Geophysics, 1, 119–127.

    Article  Google Scholar 

  • Nabighian, M. N. (1988). Electromagnetic methods in applied geophysics: Application (2 vols.). Xi’an: SEG Books.

    Book  Google Scholar 

  • Scholl, C., Neumann, J., Watts, M., Hallinan, S., & Mulè, S. (2016). Geologically constrained 2D and 3D airborne EM inversion through cross-gradient regularization and multi-grid efficiency. ASEG Extended Abstracts, 2016, 1–6.

    Article  Google Scholar 

  • Smith, R. (2014). Electromagnetic induction methods in mining geophysics from 2008 to 2012. Surveys in Geophysics, 35, 123–156.

    Article  Google Scholar 

  • Spakman, W., van der Lee, S., & van der Hilst, R. (1993). Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors, 79, 3–74.

    Article  Google Scholar 

  • Strack, K. M. (1992). Exploration with deep transient electromagnetics. Amsterdam: Elsevier.

    Google Scholar 

  • Weir, G. (1980). Transient electromagnetic fields about an infinitesimally long grounded horizontal electric dipole on the surface of a uniform half-space. Geophysical Journal International, 61, 41–56.

    Article  Google Scholar 

  • Wilson, A. J. (1997). The equivalent wavefield concept in multichannel transient electromagnetic surveying. Edinburgh: University of Edinburgh.

    Google Scholar 

  • Xue, G., Yan, S., Gelius, L., Chen, W., Zhou, N., & Li, H. (2015). Discovery of a major coal deposit in china with the use of a modified CSAMT method. Journal of Environmental and Engineering Geophysics, 20, 47–56.

    Article  Google Scholar 

  • Ziolkowski, A. (2007). Developments in the transient electromagnetic method. First Break, 25, 99.

    Article  Google Scholar 

  • Ziolkowski, A., Carson, R., Wright, D. (2007a). New technology to acquire, process, and interpret transient EM data. Presented at the EGM 2007 International Workshop, Italy.

  • Ziolkowski, A., Hobbs, B., & Wright, D. (2002). First direct hydrocarbon detection and reservoir monitoring using transient electromagnetics. First Break, 20, 224–225.

    Google Scholar 

  • Ziolkowski, A., Hobbs, B. A., & Wright, D. (2007b). Multitransient electromagnetic demonstration survey in France. Geophysics, 72, F197–F209.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scientific Instruments), Grant No. ZDYZ2012-1-05-04. We are grateful to constructive feedback by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xue, Gq. & Zhao, P. A New Imaging Approach for Dipole–Dipole Time-Domain Electromagnetic Data Based on the q-Transform. Pure Appl. Geophys. 174, 3939–3953 (2017). https://doi.org/10.1007/s00024-017-1603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1603-1

Keywords

Navigation