Skip to main content
Log in

Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study introduces the University of Arizona Solar Irradiance Based on Satellite/Korea Institute of Energy Research, which is usually called UASIBS/KIER model. Then the evaluation of modeling performance is done against the ground observations for the instantaneous, hourly, and daily time scales over the Korean Peninsula in this study. The relative root mean square error for the instantaneous time scale is 7.4 and 16.7% for the clear and cloudy skies, respectively. The hourly mean estimates are compared with the in situ measurements from 35 ground observation stations, resulting in a relative root mean square error ranging from 9.1 to 15.5%. The daily aggregates are proven as the most reliable estimates. The UASIBS/KIER estimates are also compared with the routine solar insolation product from the Korea Meteorological Administration. Finally, the solar energy resource map has been built by the daily solar irradiance derived from the UASIBS/KIER model, followed by its comparison with the other gridded datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Almeida, M. P., Zilles, R., & Lorenzo, E. (2014). Extreme overirradiance events in São Paulo, Brazil. Solar Energy, 110, 168–173.

    Article  Google Scholar 

  • Baek, J., Byun, K., Kim, D., & Choi, M. (2013). Assessment of solar insolation from COMS: Sulma and Cheongmi watersheds. Korean Journal of Remote Sensing, 29, 137–149. (In Korean with English Abstract).

    Article  Google Scholar 

  • Bendix, J., Thies, B., Nauß, T., & Cermak, J. (2006). A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land. Meteorological Applications, 13, 111–125.

    Article  Google Scholar 

  • Cho, Y. K., Kim, M. O., & Kim, B. C. (2000). Sea fog around the Korean peninsula. Journal of Applied Meteorology, 39, 2473–2479.

    Article  Google Scholar 

  • Choi, S. Won, Song, R Ah, & Kim Yong, I. (2015). Solar irradiance estimation in Korea by using modified Heliosat-II method and COMS-MI imagery. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33, 463–472. (In Korean with English Abstract).

    Article  Google Scholar 

  • Chou, M.-D., & Suarez, M. J. (1999). A solar radiation parameterization for atmospheric studies. NASA/TM, 104606, 65.

    Google Scholar 

  • Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., et al. (2011). Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy, 85, 2881–2893.

    Article  Google Scholar 

  • Cotton, W. R., Bryan, G. H., van den Heever S. C. (2011) Storm and cloud dynamics: The dynamics of clouds and precipitating mesoscale systems. (pp 820). Burlington, MA:Academic Press

  • CREC. (2013). California renewable energy forecasting, resource data and mapping. Final Report BOA-99-248-R.

  • Dedieu, G., Deschamps, P. Y., & Kerr, Y. H. (1987). Satellite estimation of solar irradiance at the surface of the Earth and of surface albedo using a physical model applied to Metcosat data. Journal of Climate and Applied Meteorology, 26, 79–87.

    Article  Google Scholar 

  • Fu, Q. (1996). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. Journal of Climate, 9, 2058–2082.

    Article  Google Scholar 

  • Fu, Q., & Liou, K. N. (1993). Parameterization of the radiative properties of cirrus clouds. Journal of Atmospheric Science, 50, 2008–2025.

    Article  Google Scholar 

  • Gautier, C., Diak, G., & Masse, S. (1980). A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. Journal of Applied Meteorology, 19, 1005–1012.

    Article  Google Scholar 

  • Geiger, B., Meurey, C., Lajas, D., Franchistéguy, L., Carrer, D., & Roujean, J.-L. (2008). Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorological Applications, 15, 411–420.

    Article  Google Scholar 

  • Ghan, S., Wang, M., Zhang, S., Ferrachat, S., Gettelman, A., Griesfeller, J., et al. (2016). Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences, 113, 5804–5811.

    Article  Google Scholar 

  • Gilgen, H., Wild, M., & Ohmura, A. (1998). Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. Journal of Climate, 11, 2042–2061.

    Article  Google Scholar 

  • Gultepe, I., Pagowski, M., & Reid, J. (2007). A satellite-based fog detection scheme using screen air temperature. Weather and Forecasting, 22, 444–456.

    Article  Google Scholar 

  • Gupta, S. K., Ritchey, N. A., Wilber, A. C., Whitlock, C. H., Gibson, G. G., & Stackhouse, P. W. (1999). A climatology of surface radiation budget derived from satellite data. Journal of Climate, 12, 2691–2710.

    Article  Google Scholar 

  • Hong, G., & Minnis, P. (2015). Effects of spherical inclusions on scattering properties of small ice cloud particles. Journal of Geophysical Research, 120, 2951–2969.

    Google Scholar 

  • Ineichen, P., Barroso, C. S., Geiger, B., Hollmann, R., Marsouin, A., & Mueller, R. (2009). Satellite application facilities irradiance products: hourly time step comparison and validation over Europe. International Journal of Remote Sensing, 30, 5549–5571.

    Article  Google Scholar 

  • IPCC. (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jee, J.-B., Zo, I.-S., & Lee, K.-T. (2013). A study on the retrievals of downward solar radiation at the surface based on the observations from multiple geostationary satellites. Korean Journal of Remote Sensing, 29, 123–135. (In Korean with English Abstract).

    Article  Google Scholar 

  • Kawamura, H., Tanahashi, S., & Takahashi, T. (1998). Estimation of insolation over the Pacific Ocean off the Sanriku coast. Journal of Oceanography, 54, 457–464.

    Article  Google Scholar 

  • Kim, C. K., Holmgren, W. F., Stovern, M., & Betterton, E. A. (2016a). Toward improved solar irradiance forecasts: derivation of downwelling surface shortwave radiation in Arizona from satellite. Pure and Applied Geophysics, 173, 2535–2553.

    Article  Google Scholar 

  • Kim, C. K., Holmgren, W. F., Stovern, M., & Betterton, E. A. (2016b). Toward improved solar irradiance forecasts: comparison of downwelling surface shortwave radiation in Arizona derived from satellite with the gridded datasets. Pure and Applied Geophysics, 173, 2929–2943.

    Article  Google Scholar 

  • Kim, C. K., Kim, H.-G., Kang, Y.-H., Yun, C.-Y., & Lee, S.-N. (2016c). Evaluation of global horizontal irradiance derived from CLAVR-x model and COMS imagery over the Korean Peninsula. New and Renewable Energy, 12, 13–20.

    Article  Google Scholar 

  • Kim, C. K., Stuefer, M., Schmitt, C. G., Heymsfield, A., & Thompson, G. (2014). Numerical modeling of ice fog in interior Alaska using the weather research and forecasting model. Pure and Applied Geophysics, 171, 1963–1982.

    Article  Google Scholar 

  • Kim, C. K., & Yum, S. S. (2010). Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.

    Article  Google Scholar 

  • Kleissl, J. P. (2013). Solar energy forecasting and resource assessment (1st ed.). Cambridge: Academic Press.

    Google Scholar 

  • Lacis, A. A., & Hansen, J. (1974). A Parameterization for the absorption of solar radiation in the Earth’s atmosphere. Journal of Atmospheric Science, 31, 118–133.

    Article  Google Scholar 

  • Lee, J., Choi, W., Kim, Y., Yun, C., Jo, D., & Kang, Y. (2013). Estimation of global horizontal insolation over the Korean Peninsula based on COMS MI satellite images. Korean Journal of Remote Sensing, 29, 151–160. (In Korean with English Abstract).

    Article  Google Scholar 

  • Li, Z., & Leighton, H. G. (1993). Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. Journal of Geophysical Research: Atmospheres, 98, 4919–4930.

    Article  Google Scholar 

  • Liou, K. N. (2002). An introduction to atmospheric radiation (2nd ed.). Cambridge: Academic Press.

    Google Scholar 

  • Lorenzo, A. T., Holmgren, W. F., & Cronin, A. D. (2015). Irradiance forecasts based on an irradiance monitoring network, cloud motion, and spatial averaging. Solar Energy, 122, 1158–1169.

    Article  Google Scholar 

  • Ma, Y., & Pinker, R. T. (2012). Modeling shortwave radiative fluxes from satellites. Journal of Geophysical Research: Atmospheres, 117, D23202. (1–19).

    Google Scholar 

  • Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., & Wild, M. (2016). Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmospheric Chemistry and Physics, 16, 11145–11161.

    Article  Google Scholar 

  • Mathiesen, P., Collier, C., & Kleissl, J. (2013). A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Solar Energy, 92, 47–61.

    Article  Google Scholar 

  • Mathiesen, P., & Kleissl, J. (2011). Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Solar Energy, 85, 967–977.

    Article  Google Scholar 

  • Moser, W., & Raschke, E. (1984). Incident solar radiation over Europe estimated from METEOSAT data. Journal of Climate and Applied Meteorology, 23, 166–170.

    Article  Google Scholar 

  • Nogherotto, R., Tompkins, A. M., Giuliani, G., Coppola, E., & Giorgi, F. (2016). Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects. Geoscientific Model Development, 9, 2533–2547.

    Article  Google Scholar 

  • NREL. (2012). U.S. Department of Energy Workshop Report: Solar Resources and Forecasting Technical Report NREL/TP-5500-55432

  • Piedehierro, A. A., Antón, M., Cazorla, A., Alados-Arboledas, L., & Olmo, F. J. (2014). Evaluation of enhancement events of total solar irradiance during cloudy conditions at Granada (Southeastern Spain). Atmospheric Research, 135–136, 1–7.

    Article  Google Scholar 

  • Pinker, R. T., & Ewing, J. A. (1985). Modeling surface solar radiation: model formulation and validation. Journal of Climate and Applied Meteorology, 24, 389–401.

    Article  Google Scholar 

  • Pinker, R. T., & Laszlo, I. (1992). Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31, 194–211.

    Article  Google Scholar 

  • Pinker, R. T., Tarpley, J. D., Laszlo, I., Mitchell, K. E., Houser, P. R., Wood, E. F., et al. (2003). Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 108, 8844. doi:10.1029/2002JD003301.

    Article  Google Scholar 

  • Pruppacher, H., & Klett, J. (1997). Microphysics of cloud and precipitation. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Rabin, R. M., & Martin, D. W. (1996). Satellite observations of shallow cumulus coverage over the central United States: an exploration of land use impact on cloud cover. Journal of Geophysical Research, 101, 7149–7155.

    Article  Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648.

    Article  Google Scholar 

  • Rigollier, C., Lefèvre, M., & Wald, L. (2004). The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy, 77, 159–169.

    Article  Google Scholar 

  • Rossow, W. B., & Schiffer, R. A. (1991). ISCCP cloud data products. Bulletin of the American Meteorological Society, 72, 2–20.

    Article  Google Scholar 

  • Rossow, W. B. & R. A. Schiffer. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80, 2261–2287.

    Article  Google Scholar 

  • Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., & Pozo-Vázquez, D. (2013). Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. Journal of Geophysical Research, 118, 9901–9913.

    Google Scholar 

  • Schillings, C., Mannstein, H., & Meyer, R. (2004). Operational method for deriving high resolution direct normal irradiance from satellite data. Solar Energy, 76, 475–484.

    Article  Google Scholar 

  • Stanhill, G., & Cohen, S. (2005). Solar radiation changes in the united states during the twentieth century: evidence from sunshine duration measurements. Journal of Climate, 18, 1503–1512.

    Article  Google Scholar 

  • Streets, D. G., Wu, Y., & Chin, M. (2006). Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters, 33, L15806. doi:10.1029/2006GL026471.

    Article  Google Scholar 

  • Stuhlmann, R., Rieland, M., & Paschke, E. (1990). An improvement of the IGMK model to derive total and diffuse solar radiation at the surface from satellite data. Journal of Applied Meteorology, 29, 586–603.

    Article  Google Scholar 

  • Tanaka, K., Ohmura, A., Folini, D., Wild, M., & Ohkawara, N. (2016). Is global dimming and brightening in Japan limited to urban areas? Atmospheric Chemistry and Physics, 16, 13969–14001.

    Article  Google Scholar 

  • Thompson, G., Tewari, M., Ikeda, K., Tessendorf, S., Weeks, C., Otkin, J., et al. (2016). Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmospheric Research, 168, 92–104.

    Article  Google Scholar 

  • Tilmes, S., Lamarque, J. F., Emmons, L. K., Conley, A., Schultz, M. G., Saunois, M., et al. (2012). Technical note: ozonesonde climatology between 1995 and 2011: description, evaluation and applications. Atmospheric Chemistry and Physics, 12, 7475–7497.

    Article  Google Scholar 

  • Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Science, 34, 1149–1152.

    Article  Google Scholar 

  • Vignola, F., Harlan, P., Perez, R., & Kmiecik, M. (2007). Analysis of satellite derived beam and global solar radiation data. Solar Energy, 81, 768–772.

    Article  Google Scholar 

  • Wang, H., & Pinker, R. T. (2009). Shortwave radiative fluxes from MODIS: model development and implementation. Journal of Geophysical Research, 114, D20201. doi:10.1029/2008JD010442.

    Article  Google Scholar 

  • Wegertseder, P., Lund, P., Mikkola, J., & Alvarado, R. G. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Solar Energy, 135, 325–336.

    Article  Google Scholar 

  • Whitlock, C. H., Charlock, T. P., Staylor, W. F., Pinker, R. T., Laszlo, I., Ohmura, A., et al. (1995). First global WCRP shortwave surface radiation budget dataset. Bulletin of the American Meteorological Society, 76, 905–922.

    Article  Google Scholar 

  • Wielicki, B. A., Harrison, E. F., Cess, R. D., King, M. D., & Randall, D. A. (1995). Mission to planet Earth: role of clouds and radiation in climate. Bulletin of the American Meteorological Society, 76, 2125–2153.

    Article  Google Scholar 

  • Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al. (2005). From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850.

    Article  Google Scholar 

  • Yang, P., Liou, K. N., Wyser, K., & Mitchell, D. (2000). Parameterization of the scattering and absorption properties of individual ice crystals. Journal of Geophysical Research, 105, 4699–4718.

    Article  Google Scholar 

  • Yeom, J.-M., Han, K.-S., Lee, C.-S., & Kim, D.-Y. (2008). An improved validation technique for the temporal discrepancy when estimated solar surface insolation compare with ground-based pyranometer: MTSAT-1R data use. Korean Journal of Remote Sensing, 24, 605–612. (In Korean with English Abstract).

    Google Scholar 

  • Yi, B., Yang, P., Liu, Q., van Delst, P., Boukabara, S.-A., & Weng, F. (2016). Improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model. Journal of Geophysical Research, 121, 2016JD025207. doi:10.1002/2016jd025207.

    Google Scholar 

  • Yordanov, G. H., Midtgard, O. M., Saetre, T. O., Nielsen, H. K., & Norum, L. E. (2013). Overirradiance (cloud enhancement) events at high latitudes. IEEE Journal of Photovoltaics, 3, 271–277.

    Article  Google Scholar 

  • Zelenka, A., Perez, R., Seals, R., & Renné, D. (1999). Effective accuracy of satellite-derived hourly irradiances. Theoretical and applied climatology, 62, 199–207.

    Article  Google Scholar 

  • Zhang, Y. C., Rossow, W. B., & Lacis, A. A. (1995). Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. Journal of Geophysical Research, 100, 1149–1165.

    Article  Google Scholar 

  • Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V., & Mishchenko, M. I. (2004). Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. Journal of Geophysical Research, 109, D19105. doi:10.1029/2003JD004457.

    Article  Google Scholar 

  • Zo, I.-S., Jee, J.-B., & Lee, K.-T. (2014). Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50, 575–584.

    Article  Google Scholar 

  • Zo, I.-S., Jee, J.-B., Lee, K.-T., & Kim, B.-Y. (2016). Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction. Asia-Pacific Journal of Atmospheric Sciences, 52, 405–412.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20143010071570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.K., Kim, HG., Kang, YH. et al. Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula. Pure Appl. Geophys. 174, 2773–2792 (2017). https://doi.org/10.1007/s00024-017-1578-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1578-y

Keywords

Navigation