Skip to main content
Log in

Regional Seismic Intensity Anomalies in the Korean Peninsula and Its Implications for Seismic-Hazard Potentials

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The strength of seismic ground motion is a consequence of seismic source strength and medium response. The dependence of seismic amplitudes and seismic intensity on regional geological structures and crustal properties in the stable intraplate region around the Korean Peninsula is investigated. An instrumental seismic intensity scale based on spectral accelerations are proposed after calibrating with the reported macroseismic intensities. A representative seismic intensity attenuation curve for the Korean Peninsula is given by \(I(M_{\text {L}},l,h) = -0.998 (\pm 0.222) + 1.72 (\pm 0.04) M_{\text {L}} - 0.322 (\pm 0.027) \, \text {ln}(l^2 + h^2) - 0.00608 (\pm 0.00049) \, \sqrt{l^2 + h^2}\), where \(I(M_{\text {L}},l,h)\) is the seismic intensity at an epicentral distance l in km for an earthquake with local magnitude \(M_{\text {L}}\) and focal depth h in km. Seismic intensities decay slowly with distance in the Korean Peninsula. The observed decay rate for the Korean Peninsula is comparable with those for other stable intraplate regions, while are lower than those for active regions. The regional seismic intensity anomalies present a characteristic correlation with geological structures. Positive seismic intensity anomalies appear in the Yeongnam massif, Okcheon belt and Gyeongsang basin, while negative seismic intensity anomalies in the Gyeonggi massif. The regional seismic intensity anomalies display positive correlations with crustal thicknesses, crustal amplifications, and seismicity density and negative correlations with heat flows. Positive seismic intensity anomalies are observed in the Yeongnam massif and Gyeongsang basin, suggesting high seismic-hazard potentials in the regions. The regional crustal properties may provide useful information on potential seismic hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki, K. (1980). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research, 85, 6496–6504.

    Article  Google Scholar 

  • Anderson, D. L., Kanamori, H., Hart, R. S., & Liu, H.-P. (1977). The earth as a seismic absorption band. Science, 196, 1104–1106.

    Article  Google Scholar 

  • Ardeleanu, L., Leydecker, G., Bonjer, K. P., Busche, H., Kaiser, D., & Schmitt, T. (2005). Probabilistic seismic hazard map for Romania as a basis for a new building code. Natural Hazards and Earth System Science, 5, 679–684.

    Article  Google Scholar 

  • Artyushkov, E. V. (1973). Stresses in the lithosphere caused by crustal thickness inhomogeneities. Journal of Geophysical Research, 78, 7675–7708.

    Article  Google Scholar 

  • Attewell, P. B., & Ramana, Y. V. (1966). Wave attenuation and internal friction as functions of frequency in rocks. Geophysics, 31, 1049–1056.

    Article  Google Scholar 

  • Bakun, W. H. (2006). MMI attenuation and historical earthquakes in the Basin and Range province of western North America. Bulletin of the Seismological Society of America, 96, 2206–2220.

    Article  Google Scholar 

  • Bakun, W. H., & Scotti, O. (2006). Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophysical Journal International, 164, 596–610.

    Article  Google Scholar 

  • Bakun, W. H., Stickney, M. C., & Rogers, G. C. (2011). The 16 May 1909 Northern Great Plains earthquake. Bulletin of the Seismological Society of America, 101, 3065–3071.

    Article  Google Scholar 

  • Bard, P. Y., & Bouchon, M. (1980). The seismic response of sediment-filled valleys. Part 1 The case of incident SH waves. Bulletin of the Seismological Society of America, 70, 1263–1286.

    Google Scholar 

  • Beauval, C., Yepes, H., Bakun, W. H., Egred, J., Alvarado, A., & Singaucho, J.-C. (2010). Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996). Geophysical Journal International, 181, 1613–1633.

    Google Scholar 

  • Bendat, J. S., & Piersol, A. G. (2010). Statistical principles. Random data: Analysis and measurement procedures (4th ed.). Hoboken: Wiley. doi:10.1002/9781118032428.ch4.

    Chapter  Google Scholar 

  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.

    Google Scholar 

  • Borcherdt, R. D., & Gibbs, J. F. (1976). Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66, 467–500.

    Google Scholar 

  • Boughacha, M. S., Ouyed, M., Ayadi, A., & Benhallou, H. (2004). Seismicity and seismic hazard mapping of northern Algeria: Map of maximum calculated intensities (MCI). Journal of Seismology, 8, 1–10.

    Article  Google Scholar 

  • Burov, E. B. (2007). Plate rheology and mechanics. In A. B. Watts (Ed.), Crust and lithosphere dynamics, treatise on geophysics (Vol. 6, pp. 100–151). Oxford: Elsevier.

    Google Scholar 

  • Casado, C. L., Palacios, S. M., Delgado, J., & Peláez, J. A. (2000). Attenuation of intensity with epicentral distance in the Iberian Peninsula. Bulletin of the Seismological Society of America, 90, 34–47.

    Article  Google Scholar 

  • Castellaro, S., Mulargia, F., & Rossi, P. L. (2008). VS30: Proxy for seismic amplification? Seismological Research Letters, 79, 540–543.

    Article  Google Scholar 

  • Chandler, A. M., & Lam, N. T. (2002). Intensity attenuation relationship for the South China region and comparison with the component attenuation model. Journal of Asian Earth Sciences, 20, 775–790.

    Article  Google Scholar 

  • Chang, E. Z. (1996). Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13, 267–277.

    Article  Google Scholar 

  • Chang, S. J., & Baag, C.-E. (2007). Moho depth and crustal \(V_P/V_S\) variation in southern Korea from teleseismic receiver functions: Implication for tectonic affinity between the Korean peninsula and China. Bulletin of the Seismological Society of America, 97, 1621–1631.

    Article  Google Scholar 

  • Cheney, W., & Kincaid, D. (2007). Numerical Mathematics and Computing. Pacific Grove: Brooks/Cole Publishing company.

    Google Scholar 

  • Cho, J.-D., Choi, J.-H., Lim, M.-T., Park, I.-H., & Ko, I.-S. (1997). A Study on the regional gravity anomaly (Southern Part of Korean Peninsula), KIGAM Research Report KR-96 (c)-5, Korea Institute of Geology and Mining and Materials, pp. 27 (in Korean).

  • Choi, H., & Noh, M. (2010). Source parameters of the May 2, 2009 Andong earthquake in South Korea. Geosciences Journal, 14, 269–276.

    Article  Google Scholar 

  • Choi, J., Kang, T.-S., & Baag, C.-E. (2009). Three-dimensional surface wave tomography for the upper crustal velocity structure of southern Korea using seismic noise correlations. Geosciences Journal, 13, 423–432.

    Article  Google Scholar 

  • Chough, S. K., & Barg, E. (1987). Tectonic history of Ulleung basin margin, East Sea (Sea of Japan). Geology, 15, 45–48.

    Article  Google Scholar 

  • Chough, S. K., Kwon, S. T., Ree, J. H., & Choi, D. K. (2000). Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth Science Reviews, 52, 175–235.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • Davenport, P. N. (2001). Seismic intensities derived from strong motion instruments in New Zealand. In: Proceedings of the Technical Conference of the New Zealand Society for Earthquake Engineering (NZSEE 2001), Wairakei, New Zealand, 2001, Paper No. 4.03.01.

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.

    Article  Google Scholar 

  • Dowrick, D. J. (1991). A revision of attenuation relationships for Modified Mercalli intensity in New Zealand earthquakes. Bulletin of the New Zealand National Society for Earthquake Engineering, 24, 210–224.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.

    Article  Google Scholar 

  • Emolo, A., Sharma, N., Festa, G., Zollo, A., Convertito, V., Park, J.-H., et al. (2015). Ground-Motion Prediction Equations for South Korea Peninsula. Bulletin of the Seismological Society of America, 105, 2625–2640.

    Article  Google Scholar 

  • Fei, Y. (1995). Thermal expansion. In T. J. Ahrens (Ed.), Mineral physics and crystallography: A handbook of physical constants (Vol. 2, pp. 29–44). Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Frankel, A. (1994). Dense array recordings in the San Bernardino Valley of Landers-Big Bear aftershocks: Basin surface waves, Moho reflections, and three-dimensional simulations, Bulletin of the Seismological Society of America, 84, 613–624.

    Google Scholar 

  • Gao, S., Liu, H., Davis, P. M., & Knopoff, L. (1996). Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: evidence for focusing in Santa Monica. Bulletin of the Seismological Society of America, 86, S209–S230.

    Google Scholar 

  • Gasperini, P., Bernardini, F., Valensise, G., & Boschi, E. (1999). Defining seismogenic sources from historical earthquake felt reports. Bulletin of the Seismological Society of America, 89, 94–110.

    Google Scholar 

  • Gaull, B. A., Michael-Leiba, M. O., & Rynn, J. M. W. (1990). Probabilistic earthquake risk maps of Australia. Australian Journal of Earth Sciences, 37, 169–187.

    Article  Google Scholar 

  • Geli, L., Bard, P. Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America, 78, 42–63.

    Google Scholar 

  • Gupta, I. N., & Nuttli, O. W. (1976). Spatial attenuation of intensities for central US earthquakes. Bulletin of the Seismological Society of America, 66, 743–751.

    Google Scholar 

  • Gutenberg, B. (1958). Attenuation of seismic waves in the earth’s mantle. Bulletin of the Seismological Society of America, 48, 269–282.

    Google Scholar 

  • Hancock, J., & Bommer, J. J. (2006). A state-of-knowledge review of the influence of strong-motion duration on structural damage. Earthquake Spectra, 22, 827–845.

    Article  Google Scholar 

  • Hanks, T. C., & McGuire, R. K. (1981). The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America, 71, 2071–2095.

    Google Scholar 

  • Heard, H. C., & Page, L. (1982). Elastic moduli, thermal expansion, and inferred permeability of two granites to 350 C and 55 megapascals. Journal of Geophysical Research, 87, 9340–4348.

    Article  Google Scholar 

  • Helffrich, G. R., & Wood, B. J. (2001). The Earth’s mantle. Nature, 412, 501–507.

    Article  Google Scholar 

  • Heki, K., Miyazaki, S. I., Takahashi, H., Kasahara, M., Kimata, F., Miura, S., et al. (1999). The Amurian Plate motion and current plate kinematics in eastern Asia. Journal of Geophysical Research, 104, 29147–29155.

    Article  Google Scholar 

  • Hinzen, K.-G., & Oemisch, M. (2001). Location and magnitude from seismic intensity data of recent and historic earthquakes in the Northern Rhine Area, Central Europe. Bulletin of the Seismological Society of America, 91, 40–56.

    Article  Google Scholar 

  • Hirata, N., Tokuyama, H., & Chung, T. W. (1989). An anomalously thick layering of the crust of the Yamato Basin, southeastern Sea of Japan: The final stage of back-arc spreading. Tectonophysics, 165, 303–314.

    Article  Google Scholar 

  • Hong, T.-K. (2010). Lg attenuation in a region with both continental and oceanic environments. Bulletin of the Seismological Society of America, 100, 851–858.

    Article  Google Scholar 

  • Hong, T.-K. (2013). Seismic discrimination of the 2009 North Korean nuclear explosion based on regional source spectra. Journal of Seismology, 17, 753–769.

    Article  Google Scholar 

  • Hong, T.-K., & Choi, H. (2012). Seismological constraints on the collision belt between the North and South China blocks in the Yellow Sea. Tectonophysics, 570, 102–113.

    Article  Google Scholar 

  • Hong, T.-K., & Kang, T.-S. (2009). Pn travel-time tomography of the paleo-continental-collision and rifting zone around Korea and Japan. Bulletin of the Seismological Society of America, 99, 416–421.

    Article  Google Scholar 

  • Hong, T.-K., & Kennett, B. L. N. (2002). On a wavelet-based method for the numerical simulation of wave propagation. Journal of Computational Physics, 183, 577–622.

    Article  Google Scholar 

  • Hong, T.-K., & Lee, K. (2012). \(m_{\rm b}(Pn)\) Scale for the Korean Peninsula and site-dependent \(Pn\) amplification. Pure and Applied Geophysics, 169, 1963–1975.

    Article  Google Scholar 

  • Hong, T.-K., & Menke, W. (2008). Imaging laterally varying regional heterogeneities from seismic coda using a source-array analysis. Physics of the Earth and Planetary Interiors, 166, 188–202.

    Article  Google Scholar 

  • Hong, T.-K., Lee, J., & Houng, S. E. (2015). Long-term evolution of intraplate seismicity in stress shadows after a megathrust. Physics of the Earth and Planetary Interiors, 245, 59–70.

    Article  Google Scholar 

  • Hong, T.-K., Park, S., & Houng, S. E. (2016). Seismotectonic properties and zonation of the far-eastern Eurasian plate around the Korean Peninsula. Pure and Applied Geophysics, 173, 1175–1195.

    Article  Google Scholar 

  • Hong, T.-K., Baag, C.-E., Choi, H., & Sheen, D.-H. (2008). Regional seismic observations of the 9 October 2006 underground nuclear explosion in North Korea and the influence of crustal structure on regional phases. Journal of Geophysical Research, 113, B03305. doi:10.1029/2007JB004950.

    Google Scholar 

  • Houng, S. E., & Hong, T.-K. (2013). Probabilistic analysis of the Korean historical earthquake records. Bulletin of the Seismological Society of America, 103, 2782–2796.

    Article  Google Scholar 

  • Howell, B. F., & Schultz, T. R. (1975). Attenuation of modified Mercalli intensity with distance from the epicenter. Bulletin of the Seismological Society of America, 65, 651–665.

    Google Scholar 

  • Hughes, D. S., & Maurette, C. (1956). Variation of elastic wave velocities in granites with pressure and temperature. Geophysics, 21, 277–284.

    Article  Google Scholar 

  • Hwang, H. J., & Mitchell, B. J. (1987). Shear velocities, \(Q_{\beta }\), and the frequency dependence of \(Q_{\beta }\) in stable and tectonically active regions from surface wave observations. Geophysical Journal International, 90, 575–613.

    Article  Google Scholar 

  • Jin, A., & Aki, K. (1989). Spatial and temporal correlation between coda \(Q^{-1}\) and seismicity and its physical mechanism. Journal of Geophysical Research, 94, 14041–14059.

    Article  Google Scholar 

  • Jo, E., & Hong, T.-K. (2013). \(V_\text{P}/V_\text{S}\) ratios in the upper crust of the southern Korean Peninsula and their correlations with seismic and geophysical properties. Journal of Asian Earth Sciences, 66, 204–214.

    Article  Google Scholar 

  • Kanth, S. R., & Iyengar, R. N. (2007). Estimation of seismic spectral acceleration in peninsular India. Journal of Earth System Science, 116, 199–214.

    Article  Google Scholar 

  • Kawase, H., & Aki, K. (1990). Topography effect at the critical SV-wave incidence: Possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987. Bulletin of the Seismological Society of America, 80, 1–22.

    Google Scholar 

  • Kim, H. J., Jou, H.-T., Cho, H.-M., Bijwaard, H., Sato, T., Hong, J.-K., et al. (2003). Crustal structure of the continental margin of Korea in the East Sea (Japan Sea) from deep seismic sounding data: evidence for rifting affected by the hotter than normal mantle. Tectonophysics, 364, 25–42.

    Article  Google Scholar 

  • Kim, K.-H., & Park, Y. (2010). The 20 January 2007 \(M_{\rm L}\) 4.8 Odaesan earthquake and its implications for regional tectonics in Korea. Bulletin of the Seismological Society of America, 100, 1395–1405.

    Article  Google Scholar 

  • Kim, W.-Y., Choi, H., & Noh, M. (2010). The 20 January 2007 Odaesan, Korea, earthquake sequence: Reactivation of a buried strike-slip fault? Bulletin of the Seismological Society of America, 100, 1120–1137.

    Article  Google Scholar 

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88, 228–241.

    Google Scholar 

  • Korea Meteorological Administration. (2002) Seismological Annual Report 2001, Dongjin, Seoul, 5–10 (in Korean).

  • Korea Meteorological Administration. (2003). Seismological Annual Report 2002, Dongjin, Seoul, 6–14 (in Korean).

  • Korea Meteorological Administration. (2004). Seismological Annual Report 2003, Dongjin, Seoul, 6–17 (in Korean).

  • Korea Meteorological Administration. (2005). Seismological Annual Report 2004, Dongjin, Seoul, 55–64 (in Korean).

  • Korea Meteorological Administration. (2006). Seismological Annual Report 2005, Dongjin, Seoul, 4–104 (in Korean).

  • Korea Meteorological Administration. (2007). Seismological Annual Report 2006, Dongjin, Seoul, 4–131 (in Korean).

  • Korea Meteorological Administration. (2008). Seismological Annual Report 2007, Dongjin, Seoul, 4–73 (in Korean).

  • Korea Meteorological Administration. (2009). Seismological Annual Report 2008, Dongjin, Seoul, 4–81 (in Korean).

  • Korea Meteorological Administration. (2010). Seismological Annual Report 2009, Dongjin, Seoul, 4–109 (in Korean).

  • Korea Meteorological Administration. (2011). Seismological Annual Report 2010, Dongjin, Seoul, 4–73 (in Korean).

  • Korea Meteorological Administration. (2012). Seismological Annual Report 2011, Dongjin, Seoul, 4–111 (in Korean).

  • Korea Meteorological Administration. (2013). Seismological Annual Report 2012, Dongjin, Seoul, 4–119 (in Korean).

  • Korea Meteorological Administration. (2014). Seismological Annual Report 2013, Dongjin, Seoul, 4–195 (in Korean).

  • Kyung, J. B., Huh, S. Y., Do, J. Y., & Cho, D. (2007). Relation of intensity, fault plane solutions and fault of the January 20, 2007 Odaesan earthquake (\(M_\text{L} = 4.8\)). Journal of Korean Earth Science Society, 28, 202–213. (in Korean).

    Article  Google Scholar 

  • Lee, W., & Baag, C.-E. (2008). Local crustal structures of southern Korea from joint analysis of waveforms and travel times. Geosciences Journal, 12, 419–428.

    Article  Google Scholar 

  • Lee, Y., Park, S., Kim, J., Kim, H. C., & Koo, M. H. (2010). Geothermal resource assessment in Korea. Renewable and Sustainable Energy Reviews, 14, 2392–2400.

    Article  Google Scholar 

  • Lee, K., & Kim, J.-K. (2002). Intensity attenuation in the Sino-Korean craton. Bulletin of the Seismological Society of America, 92, 783–793.

    Article  Google Scholar 

  • Main, I. G., Peacock, S., & Meredith, P. G. (1990). Scattering attenuation and the fractal geometry of fracture systems. Pure and Applied Geophysics, 133, 283–304.

    Article  Google Scholar 

  • Malhotra, P. K. (1999). Response of buildings to near-field pulse-like ground motions. Earthquake Engineering and Structural Dynamics, 28, 1309–1326.

    Article  Google Scholar 

  • Musson, R. M. W. (2005). Intensity attenuation in the UK. Journal of Seismology, 9, 73–86.

    Article  Google Scholar 

  • Oh, C. W. (2006). A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous, Gondwana Research, 9, 47–61.

    Article  Google Scholar 

  • Olsen, K. B. (2000). Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bulletin of the Seismological Society of America, 90, S77–S94.

    Article  Google Scholar 

  • Papazachos, C., & Papaioannou, C. (1997). The macroseismic field of the Balkan area. Journal of Seismology, 1, 181–201.

    Article  Google Scholar 

  • Pasolini, C., Albarello, D., Gasperini, P., D’Amico, V., & Lolli, B. (2008). The attenuation of seismic intensity in Italy. Part II: Modeling and validation. Bulletin of the Seismological Society of America, 98, 692–708.

    Article  Google Scholar 

  • Reilly, W. I. (1962). Gravity and crustal thickness in New Zealand. New Zealand Journal of Geology and Geophysics, 5, 228–233.

    Article  Google Scholar 

  • Roth, E. H., Wiens, D. A., & Zhao, D. (2000). An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle. Geophysical Research Letters, 27, 601–604.

    Article  Google Scholar 

  • Semblat, J. F., Kham, M., Parara, E., Bard, P. Y., Pitilakis, K., Makra, K., et al. (2005). Seismic wave amplification: Basin geometry vs soil layering. Soil Dynamics and Earthquake Engineering, 25, 529–538.

    Article  Google Scholar 

  • Slejko, D., Peruzza, L., & Rebez, A. (1998). Seismic hazard maps of Italy. Annals of Geophysics, 41, 183–214.

    Google Scholar 

  • Snieder, R., & Şafak, E. (2006). Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, 96, 586–598.

    Article  Google Scholar 

  • Sokolov, V. Y., & Chernov, Y. K. (1998). On the correlation of seismic intensity with Fourier amplitude spectra. Earthquake Spectra, 14, 679–694.

    Article  Google Scholar 

  • Sørensen, M. B., Stromeyer, D., & Grünthal, G. (2009). Attenuation of macroseismic intensity: A new relation for the Marmara Sea region, northwest Turkey. Bulletin of the Seismological Society of America, 99, 538–553.

    Article  Google Scholar 

  • Stromeyer, D., & Grünthal, G. (2009). Attenuation relationship of macroseismic intensities in Central Europe. Bulletin of the Seismological Society of America, 99, 554–565.

    Article  Google Scholar 

  • Szeliga, W., Hough, S., Martin, S., & Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bulletin of the Seismological Society of America, 100, 570–584.

    Article  Google Scholar 

  • Tilford, N. R., Chandra, U., Amick, D. C., Moran, R., & Snider, F. (1985). Attenuation of intensities and effect of local site conditions on observed intensities during the Corinth, Greece, earthquakes of 24 and 25 February and 4 March 1981. Bulletin of the Seismological Society of America, 75, 923–937.

    Google Scholar 

  • Trifunac, M. D., & Brady, A. G. (1975). On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65, 139–162.

    Google Scholar 

  • Trifunac, M. D., & Lee, V. W. (1989). Empirical models for scaling Fourier amplitude spectra of strong ground acceleration in terms of earthquake magnitude source to station distance, site intensity and recording site conditions. Soil Dynamics and Earthquake Engineering, 8, 110–125.

    Article  Google Scholar 

  • Walsh, J. B. (1966). Seismic wave attenuation in rock due to friction. Journal of Geophysical Research, 71, 2591–2599.

    Article  Google Scholar 

  • Yang, J., & Sato, T. (2000). Interpretation of seismic vertical amplification observed at an array site. Bulletin of the Seismological Society of America, 90, 275–285.

    Article  Google Scholar 

  • Yin, A., & Nie, S. (1993). An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801–813.

    Article  Google Scholar 

  • Zhao, D., Huang, Z., Umino, N., Hasegawa, A., & Yoshida, T. (2011). Seismic imaging of the Amur-Okhotsk plate boundary zone in the Japan Sea. Physics of the Earth and Planetary Interiors, 188, 82–95.

    Article  Google Scholar 

  • Zohar, M., & Marco, S. (2012). Re-estimating the epicenter of the 1927 Jericho earthquake using spatial distribution of intensity data. Journal of Applied Geophysics, 82, 19–29.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Associate Editor Fabio Romanelli and two anonymous reviewers for valuable review comments. This work was supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-7040. Also, this research was partly supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Kyung Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Hong, TK. Regional Seismic Intensity Anomalies in the Korean Peninsula and Its Implications for Seismic-Hazard Potentials. Pure Appl. Geophys. 174, 2561–2579 (2017). https://doi.org/10.1007/s00024-017-1576-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1576-0

Keywords

Navigation