Skip to main content
Log in

Evidence for Static and Dynamic Triggering of Seismicity Following the 24 August 2016, M W = 6.0, Amatrice (Central Italy) Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The recent 24 August 2016, M W = 6.0, Amatrice earthquake (central Italy) and the resulting aftershock sequence represents a test case to investigate the static and dynamic stress/strain contribution to the triggering of the sequence. Here we test the hypothesis that either static or dynamic stress contribution alone may not be sufficient to explain the aftershock distribution. We first inferred the horizontal source rupture directivity together with an estimate of the surface fault projection from the analysis of the peak-ground velocity. We computed the peak-dynamic strain field, modified by source directivity, using the peak-ground velocity as a strain proxy and the Coulomb static stress change. Finally, we compared the seismicity rate map (β-statistic) with each of the estimated fields to investigate correlations with the aftershock pattern. We found that the area of the highest values of the estimated peak-dynamic strain field better reproduces the observed asymmetry in the aftershock distribution. This suggests that, in addition to Coulomb static stress change, dynamic strain enhanced by source directivity, contributed to the triggering of the Amatrice earthquake aftershocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ben-Menahem, A. (1961). Radiation of seismic surface waves from finite moving sources. Bulletin of the Seismological Society of America, 51(3), 401–435.

    Google Scholar 

  • Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., et al. (2011). Ground motion prediction equations derived from the Italian strong motion data base. Bulletin of Earthquake Engineering, 9(6), 1899–1920.

    Article  Google Scholar 

  • Boatwright, J. (2007). The persistence of directivity in small earthquakes. Bulletin of the Seismological Society of America, 97(6), 1850–1861.

    Article  Google Scholar 

  • Brodsky, E. E., & van der Elst, N. J. (2014). The uses of dynamic earthquake triggering. Annual Review of Earth and Planetary Sciences, 42(42), 317–339. doi:10.1146/Annurev-Earth-060313-054648.

    Article  Google Scholar 

  • Cirella, A., Piatanesi, A. (2016). Source complexity of the 2016 Amatrice earthquake from non linear inversion of strong motion data: Preliminary results. doi:10.5281/zenodo.153821.

  • Convertito, V., Caccavale, M., De Matteis, R., Emolo, A., Wald, D., & Zollo, A. (2012). Fault extent estimation for near-real-time ground-shaking map computation purposes. Bulletin of the Seismological Society of America, 102(2), 661–679.

    Article  Google Scholar 

  • Convertito, V., Catalli, F., & Emolo, A. (2013). Combining stress transfer and source directivity: The case of the 2012 Emilia seismic sequence. Scientific Reports, 3, 3114. doi:10.1038/srep03114.

    Article  Google Scholar 

  • Convertito, V., De Matteis, R., & Emolo, A. (2016a). Investigating triggering of the aftershocks of the 2014 Napa earthquake. Bulletin of the Seismological Society of America, 106(5), 2063–2070. doi:10.1785/0120160011.

    Article  Google Scholar 

  • Convertito, V., & Emolo, A. (2012). Investigating rupture direction for three 2012 moderate earthquakes in northern Italy from inversion of peak-ground motion parameters. Bulletin of the Seismological Society of America, 102(6), 2764–2770.

    Article  Google Scholar 

  • Convertito, V., Pino, N. A., & Di Luccio, F. (2016b). Investigating source directivity of moderate earthquakes by multiple approach: The 2013 Matese (southern Italy) M W = 5 event. Geophysical Journal International, 207, 1513–1528. doi:10.1093/gji/ggw360.

    Article  Google Scholar 

  • Douglas, J. (2006). Estimating strong ground motion at great depths, Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 30 August–1 September 2006.

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New Jersey: Wiley.

    Google Scholar 

  • El Hariri, M., Abercrombie, R. E., Rowe, C. A., & Do Nascimento, A. F. (2010). The role of fluids in triggering earthquakes: Observations from reservoir induced seismicity in Brazil. Geophysical Journal International, 181, 1566–1574. doi:10.1111/j.1365-246X.2010.04554.x.

    Google Scholar 

  • Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441, 1135–1138. doi:10.1038/nature04798.

    Article  Google Scholar 

  • Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33, 335–367. doi:10.1146/annurev.earth.33.092203.122505.

    Article  Google Scholar 

  • Gomberg, J., Bodin, P., & Reasenberg, P. A. (2003). Observing earthquakes triggered in the near field by dynamic deformations. Bulletin of the Seismological Society of America, 93(1), 118–138.

    Article  Google Scholar 

  • Gomberg, J., Reasenberg, P. A., Bodin, P., & Harris, R. A. (2001). Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature, 411, 462–466.

    Article  Google Scholar 

  • Herrmann, R. B., Malagnini, L., & Munafò, I. (2011). Regional moment tensor of the 2009 L’Aquila earthquake sequence. Bulletin of the Seismological Society of America, 101(3), 975–993.

    Article  Google Scholar 

  • Hill, D. P., et al. (1993). Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science, 260, 1617–1623.

    Article  Google Scholar 

  • Joyner, W. B. (1991). Directivity for non-uniform ruptures. Bulletin of the Seismological Society of America, 81(4), 1391–1395.

    Google Scholar 

  • Kilb, D., Gomberg, J., & Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408, 570–574.

    Article  Google Scholar 

  • Lin, J., & Stein, R. S. (2004). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303. doi:10.1029/2003JB002607.

    Article  Google Scholar 

  • Michele, M., Di Stefano, R., Chiaraluce, L., Cattaneo, M., De Gori, P., Monachesi, G., Latorre, D., Marzorati, S., Valoroso, L., Ladina, C., Chiarabba, C., Lauciani, V., Fares, M. (2016). The Amatrice 2016 seismic sequence: A preliminary look to the mainshock and aftershocks distribution. Annals of Geophysics, 59, Fast Track 5: The Amatrice seismic sequence: Preliminary data and results. doi:10.4401/ag-7227.

  • Michelini, A., Faenza, L., Lauciani, V., & Malagnini, L. (2008). ShakeMap implementation in Italy. Seismological Research Letters, 79(5), 688–697.

    Article  Google Scholar 

  • Montuori, C., Murru, M., & Falcone, G. (2016). Spatial variation of the b-value observed for the periods preceding and following the 24 August 2016, Amatrice earthquake (M L 6.0) (Central Italy). Annals of Geophysics. doi:10.4401/ag-7273. (Fast Track 5, 2016).

    Google Scholar 

  • Pino, N. A., & Di Luccio, F. (2009). Source complexity of the 6 April 2009 L’Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis. Geophysical Research Letters, 36, L23305. doi:10.1029/2009GL041331.

    Article  Google Scholar 

  • Pino, N. A., Mazza, S., & Boschi, E. (1999). Rupture directivity of the major shocks in the 1997 Umbria-Marche (central Italy) sequence from regional broadband waveforms. Geophysical Research Letters, 26, 2101–2104.

    Article  Google Scholar 

  • Pischiutta, M., Akinci, A., Malagnini, L., & Herrero, A. (2016). Characteristics of the strong ground motion from the 24th August 2016 Amatrice earthquake. Annals of Geophysics. doi:10.4401/AG-7219. (Fast Track 5, 2016).

    Google Scholar 

  • Pondrelli, S., Salimbeni, S., & Perfetti, P. (2016). Moment tensor solutions for the Amatrice 2016 seismic sequence. Annals of Geophysics. doi:10.4401/ag-7240. (Fast Track 5, 2016).

    Google Scholar 

  • Reasenberg, P. A., & Simpson, R. W. (1992). Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255, 1687–1690.

    Article  Google Scholar 

  • Spagnuolo, E., Cirella, A., & Akinci, A. (2016). Investigating the effectiveness of rupture directivity during the August 24, 2016 M w 6.0 central Italy earthquake. Annals of Geophysics. doi:10.4401/ag-7213. (Fast Track 5, 2016).

    Google Scholar 

  • Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.

    Article  Google Scholar 

  • Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research, 112, B07309. doi:10.1029/2006JB004665.

    Article  Google Scholar 

  • Tinti, E., Scognamiglio, L., Michelini, A., & Cocco, M. (2016). Slip heterogeneity and directivity of the M L 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophysical Research Letters, 43(20), 10745–10752. doi:10.1002/2016GL071263.

    Article  Google Scholar 

  • Toda, S., Stein, R. S., Lin, J., Sevilgen, V. (2011). Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide, U.S. Geological Survey Open-File Report 2011-1060, p 63.

  • Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., & Waldhauser, F. (2013). Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. Journal of Geophysical Research, 118, 1156–1176. doi:10.1002/jgrb.50130.

    Google Scholar 

  • van der Elst, N. J., & Brodsky, E. E. (2010). Connecting near-field and far-field earthquake triggering to dynamic strain. Journal of Geophysical Research, 115, B07311. doi:10.1029/2009JB006681.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Convertito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Convertito, V., De Matteis, R. & Pino, N.A. Evidence for Static and Dynamic Triggering of Seismicity Following the 24 August 2016, M W = 6.0, Amatrice (Central Italy) Earthquake. Pure Appl. Geophys. 174, 3663–3672 (2017). https://doi.org/10.1007/s00024-017-1559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1559-1

Keywords

Navigation