Skip to main content
Log in

Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arafa, W. (2002). Permeability of radon-222 through some materials. Radiation Measurements, 35, 207–211.

    Article  Google Scholar 

  • Chyi, L. L., Quick, T. J., Yang, T. F., & Chen, C. H. (2005). Soil gas radon spectra and earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 16, 763–774.

    Article  Google Scholar 

  • Dewey, J. F., & Bird, J. M. (1970). Mountain belts and the new global tectonics. Journal of Geophysical Research, 75, 2625–2647.

    Article  Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044.

    Article  Google Scholar 

  • Etiope, G., & Lombardi, S. (1995). Evidence for radon transport by carrier gas through faulted clays in Italy. Journal of Radioanalytical and Nuclear Chemistry, 193, 291–300.

    Article  Google Scholar 

  • Fu, C. C., Yang, T. F., Walia, V., & Cheng, C. H. (2005). Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochemical Journal, 39, 427–439.

    Article  Google Scholar 

  • Ghosh, D., Deb, A., & Sengupta, R. (2009). Anomalous radon emission as precursor of earthquakes. Journal of Applied Geophysics, 69, 67–81.

    Article  Google Scholar 

  • Giacomino, A., Abollino, O., Malandrino, M., & Mentasti, E. (2011). The role chemometrics in single and sequential extraction assays: A review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques. Analytica Chimica Acta, 688, 122–139.

    Article  Google Scholar 

  • Guerra, M., & Lombardi, S. (2001). Soil-gas method for tracing neotectonic faults in clay basin: The Pisticci field (southern Italy). Tectonophysics, 339, 511–522.

    Article  Google Scholar 

  • Haykin, S. (1994). Neural networks: A comprehensive foundation. New Jersey: Prentice-Hall Inc.

    Google Scholar 

  • Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32, 1–49.

    Article  Google Scholar 

  • Igarashi, G., Sacki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., et al. (1995). Groundwater radon anomaly before the Kobe earthquake in Japan. Science, 269, 60–61.

    Article  Google Scholar 

  • Jaacks, J. A. (1984). Meteorological influence upon mercury, radon and helium soil gas emission. Ph.D. Thesis, Colorado School of mines.

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2013). Radon and thoron anomalies along Mat fault in Mizoram, India. Journal of Earth System Science, 122, 1507–1513.

    Article  Google Scholar 

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014a). Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Applied Radiation and Isotopes, 86, 79–84.

    Article  Google Scholar 

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014b). Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Natural Hazards, 72, 443–454.

    Article  Google Scholar 

  • Jönsson, G. (1981). The angular sensitivity of Kodak LR-film to alpha particles. Nuclear Instruments and Methods in Physics Research, 190, 407–414.

    Article  Google Scholar 

  • King, C. Y. (1986). Gas geochemistry applied to earthquake prediction: An overview. Journal of Geophysical Research, 91, 12269–12281.

    Article  Google Scholar 

  • King, C.-Y., & Wakita, H. (1981). Anomalous radon changes in an artesian well and possible relation to earthquake (abstract). Earthquake Notes, 52(1), 71.

    Google Scholar 

  • Kraner, H. W., Schroeder, G. L., & Evans, R. D. (1964). Measurement of the effects of atmospheric variables on radon-222 flux and soil-gas concentrations. In L. A. S. Adams & W. M. Lowder (Eds.), Symposium Proceedings of Natural Radiation Environment, Houston, Texas (pp. 191–214), 10–13 April 1963. University of Chicago Press: Chicago.

  • Külahci, F., & Çiçek, Ş. (2014). Time-series analysis of water and soil radon anomalies to identify micro-macro-earthqaukes. Arabian Journal of Geosciences, 8(7), 5239–5246.

    Article  Google Scholar 

  • Külahci, F., Inceoz, M., Dogru, M., Aksoy, E., & Baykara, O. (2009). Artificial neural network model for earthquake prediction with radon monitoring. Applied Radiation and Isotopes, 67, 212–219.

    Article  Google Scholar 

  • Külahci, F., & Şen, Z. (2014). On the correction of spatial and statistical uncertainties in systematic measurements of 222Rn for earthquake prediction. Surveys in Geophysics, 35(2), 449–478.

    Article  Google Scholar 

  • Kuo, T., Su, C., Chang, C., Lin, C., Cheng, W., Liang, H., et al. (2010). Application of recurrent radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan. Radiation Measurements, 45, 1049–1054.

    Article  Google Scholar 

  • Latt, Z. Z., & Wittenberg, H. (2014). Improving flood forecasting in a developing country: A comparative study of stepwise multiple linear regression and artificial neural network. Water Resources Management, 28, 2109–2128.

    Article  Google Scholar 

  • Liu, K. K., Yui, T. F., Tasi, Y. B., & Teng, T. L. (1984). Variation of radon content in groundwater and possible correlation with seismic activities in the northern Taiwan. Pure and Applied Geophysics, 122, 231–244.

    Article  Google Scholar 

  • Mayya, Y. S., Eappen, K. P., & Nambi, K. S. V. (1998). Methodology for mixed field inhalation dosimetry in monazite areas using a twin-cup dosimeter with three track detectors. Radiation Protection Dosimetry, 77, 177–184.

    Article  Google Scholar 

  • Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., & Akashe, B. (2002). Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. Journal of Environmental Radioactivity, 62, 225–233.

    Article  Google Scholar 

  • Price, J. G., Christensen, L., Hess, R., La Pointe, D. D., Ramelli, A. R., Desilets, M., et al. (1994). Radon in outdoor air in Nevada. Health Physics, 66, 433–438.

    Article  Google Scholar 

  • Ramachandran, T. V., Lalit, B. Y., & Mishra, U. C. (1987). Measurement of radon permeability through some membranes. International Journal of Radiation Applications and Instrumentation Part D Nuclear Tracks and Radiation Measurements, 13, 81–84.

    Article  Google Scholar 

  • Rannou, A. (1989). The bare detector and results of indoor radon survey in France. In Proceedings of International Workshop on Radon monitoring in Radioprotection, Environmental Radioactivity and Earth Science (pp. 145–222).

  • Rawat, U. S., & Parihar, C. P. S. (2001). Geoenvironment of Mizoram and its implication in development. In Proceedings of National SymposiumRole of Earth Sciences in Integrated Development and Related Societal Issues, GSISP–65 (I), 185–190.

  • Sen, Z., & Birpinar, M. E. (2004). Water resources assessment, IACWRA 2004 Lecture Notes (p. 100). Istanbul: Water Engineering Research and Development Center.

    Google Scholar 

  • Singh, S., Jaishi, H.P., Tiwari, R.P., Tiwari, R.C. (2014). Variations of soil radon concentrations along Chite Fault in Aizawl district, Mizoram, India. Radiation Protection Dosimetry. doi:10.1093/rpd/ncu221.

  • Singh, M., Kumar, M., Jain, R. K., & Chatrath, R. P. (1999). Radon in ground water related to seismic events. Radiation Measurements, 30, 465–469.

    Article  Google Scholar 

  • Stranden, E., Kolstad, A. K., & Lind, B. (1984). The influence of moisture and temperature on radon exhalation. Radiation Protection Dosimetry, 7, 55–58.

    Article  Google Scholar 

  • The Mathworks Inc. (2007). Version R2007a. New Jersey: Prentice Hall.

  • Virk, H. S., Walia, V., & Kumar, N. (2001). Radon/helium precursory signals of Chamoli earthquakes, Garhwal Himalaya, India. Journal of Geodynamics, 31, 201–210.

    Article  Google Scholar 

  • Virk, H. S., Walia, V., Sharma, A. K., Kumar, N., & Kumar, R. (2000). Correlation of radon with microsiesmic events in Kangra and Chamba Valleys of N-W Himalaya. Geofisica Internacional, 39, 221–227.

    Google Scholar 

  • Walia, V., Virk, H. S., Yang, T. F., Mahajan, S., Walia, M., & Bajwa, B. S. (2005). Earthquake prediction studies using radon as a precursor in NW Himalayas, India: A case study. Terrestrial, Atmospheric and Oceanic Sciences, 16, 775–804.

    Article  Google Scholar 

  • Wattananikorn, K., Kanaree, M., & Wiboolsake, S. (1998). Soil gas radon as an earthquake precursor: Some considerations on data improvement. Radiation Measurements, 29, 593–598.

    Article  Google Scholar 

  • Zurada, J. M. (1992). Introduction to artificial neural systems (p. 683). St. Paul: West Publishing Company.

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Ministry of Earth Sciences (MoES), Govt. of India, New Delhi, in the form of Major project vide Sanction Order No. MoES/P.O.(Seismo)/1(167)/2013 dated 10.12.2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Jaishi, H.P., Tiwari, R.P. et al. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies. Pure Appl. Geophys. 174, 2793–2802 (2017). https://doi.org/10.1007/s00024-017-1556-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1556-4

Keywords

Navigation