Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 5, pp 1845–1854 | Cite as

Testing an Earthquake Prediction Algorithm: The 2016 New Zealand and Chile Earthquakes

  • Vladimir G. KossobokovEmail author
Article
Part of the following topical collections:
  1. NZ-2016

Abstract

The 13 November 2016, M7.8, 54 km NNE of Amberley, New Zealand and the 25 December 2016, M7.6, 42 km SW of Puerto Quellon, Chile earthquakes happened outside the area of the on-going real-time global testing of the intermediate-term middle-range earthquake prediction algorithm M8, accepted in 1992 for the M7.5+ range. Naturally, over the past two decades, the level of registration of earthquakes worldwide has grown significantly and by now is sufficient for diagnosis of times of increased probability (TIPs) by the M8 algorithm on the entire territory of New Zealand and Southern Chile as far as below 40°S. The mid-2016 update of the M8 predictions determines TIPs in the additional circles of investigation (CIs) where the two earthquakes have happened. Thus, after 50 semiannual updates in the real-time prediction mode, we (1) confirm statistically approved high confidence of the M8–MSc predictions and (2) conclude a possibility of expanding the territory of the Global Test of the algorithms M8 and MSc in an apparently necessary revision of the 1992 settings.

Keywords

Earthquake prediction algorithm M8 hypothesis testing statistical significance non-linear dynamics hierarchically self-organized system 

Notes

Acknowledgements

Thanks to James W. Dewey and an anonymous reviewer for their valuable comments and suggestions that helped improving presentation of the post-the-fact application of the M8 algorithm in New Zealand and Chile. The study supported by the Russian Science Foundation Grant No. 15-17-30020.

References

  1. Bhatia, S. C., Chalam, S. V., Gaur, V. K., Keilis Borok, V. I., & Kossobokov, V. G. (1989). On intermediate term prediction of strong earthquakes in the Himalayan arc region using pattern recognition algorithm M8. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 98(1), 111–123.Google Scholar
  2. Davis, C., Keilis-Borok, V., Kossobokov, V., & Soloviev, A. (2012). Advance prediction of the March 11, 2011 Great East Japan Earthquake: a missed opportunity for disaster preparedness. International Journal of Disaster Risk Reduction, 1, 17–32. doi: 10.1016/j.ijdrr.2012.03.001.CrossRefGoogle Scholar
  3. Gahalaut, V. K., Kuznetsov, I. V., Kossobokov, V. G., Gabrielov, A. M., & Keilis-Borok, V. I. (1992). Application of pattern recognition algorithm in the seismic belts of the Indian convergent plate margins—M8 algorithm. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 101(3), 239–254.Google Scholar
  4. Gelfand, I., Guberman, Sh, Keilis-Borok, V., Knopoff, L., Press, F., Ransman, E., et al. (1976). Pattern recognition applied to earthquakes epicenters in California. Physics of the Earth and Planetary Interiors, 11, 227–283.CrossRefGoogle Scholar
  5. Ghil, M., Yiou, P., Hallegatte, S., Malamud, B. D., Naveau, P., Soloviev, A., et al. (2011). Extreme events: dynamics, statistics and prediction. Nonlinear Processes in Geophysics, 18, 295–350. doi: 10.5194/npg-18-295-201.CrossRefGoogle Scholar
  6. Gorshkov, A., Kossobokov, V., & Soloviev, A. (2003). 6. Recognition of earthquake-prone areas. In V. I. Keilis-Borok & A. A. Soloviev (Eds.), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (pp. 141–207). Heidelberg: Springer.Google Scholar
  7. Harte, D., Li, D.-F., Vreede, M., & Vere-Jones, D. (2003). Quantifying the M8 prediction algorithm: reduction to a single critical variable and stability results. New Zealand Journal of Geology and Geophysics, 46, 141–152.CrossRefGoogle Scholar
  8. Healy, J. H., Kossobokov, V. G., & Dewey, J. W. (1992). A test to evaluate the earthquake prediction algorithm, M8. US Geological Survey Open-File Report, 92–401, 23. (with 6 Appendices).Google Scholar
  9. Jordan, T. H., Chen, Y.-T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., et al. (2011). Operational earthquake forecasting: state of knowledge and guidelines for utilization. Report by the International Commission on Earthquake Forecasting for Civil Protection. Annals of Geophysics, 54(4), 391. doi: 10.4401/ag-5350.Google Scholar
  10. Keilis-Borok, V. I. (1990). The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction. Reviews of Geophysics, 28(1), 19–34.CrossRefGoogle Scholar
  11. Keilis-Borok, V. I., Knopoff, L., Kossobokov, V. G., & Rotvain, I. M. (1990a). Intermediate term prediction in advance of the Loma Prieta earthquake. Geophysical Research Letters, 17(9), 1461–1464.CrossRefGoogle Scholar
  12. Keilis-Borok, V. I., & Kossobokov, V. G. (1987). Periods of high probability of occurrence of the world’s strongest earthquakes. Computational Seismology, 19 (pp. 45–53). New York: Allerton Press Inc.Google Scholar
  13. Keilis-Borok, V. I., & Kossobokov, V. G. (1990a). Premonitory activation of seismic flow: algorithm M8. Physics of the Earth and Planetary Interiors, 61, 73–83.CrossRefGoogle Scholar
  14. Keilis-Borok, V. I., & Kossobokov, V. G. (1990b). Times of Increased Probability of Strong Earthquakes (M ≥ 7.5) Diagnosed by Algorithm M8 in Japan and Adjacent Territories. Journal of Geophysical Research, 95(B8), 12413–12422.CrossRefGoogle Scholar
  15. Keilis-Borok, V. I., Kossobokov, V. G., & Smith, S. W. (1990b). Reduction of territorial uncertainty of earthquake forecasting. Physics of the Earth and Planetary Interiors, 61, R1–R4.CrossRefGoogle Scholar
  16. Kosobokov, V. G., & Mazhkenov, S. A. (1994). Times of increased probability of large earthquakes in the Eastern Tien Shan diagnosed by the M8 algorithm. In D. K. Chowdhury (Ed.), Computational Seismology and Geodynamics, 1 (pp. 16–19). Washington, D.C.: The Union.Google Scholar
  17. Kossobokov, V. G. (1997). Chapter 4. User Manual for M8. In: Healy, J.H., Keilis-Borok, V. I., Lee, W. H. K. (Eds.), Algorithms for earthquake statistics and prediction. IASPEI Software Library, Vol. 6. Seismol. Soc. Am., El Cerrito, CA, 167–221, with Disk #4: M8 Programs and Test Data Files.Google Scholar
  18. Kossobokov, V. G. (2004). Earthquake prediction: basics, achievements, perspectives. Acta Geodaetica et Geophysica Hungarica, 39(2–3), 205–221.CrossRefGoogle Scholar
  19. Kossobokov, V. (2011). Are Mega Earthquakes Predictable? Izvestiya, Atmospheric and Oceanic Physics, 46(8), 951–961. doi: 10.1134/S0001433811080032.CrossRefGoogle Scholar
  20. Kossobokov, V. G. (2013). Earthquake prediction: 20 years of global experiment. Natural Hazards, 69(2), 1155–1177. doi: 10.1007/s11069-012-0198-1.CrossRefGoogle Scholar
  21. Kossobokov, V. (2014). Chapter 18. Times of Increased probabilities for occurrence of catastrophic earthquakes: 25 years of hypothesis testing in real time. In M. Wyss & J. Shroder (Eds.), Earthquake Hazard, Risk, and Disasters (pp. 477–504). London: Elsevier.CrossRefGoogle Scholar
  22. Kossobokov, V. G., & Carlson, J. M. (1995). Active zone size vs. activity: a study of different seismicity patterns in the context of the prediction algorithm M8. Journal of Geophysical Research, 100(B4), 6431–6441.CrossRefGoogle Scholar
  23. Kossobokov, V. G., Healy, J. H., & Dewey, J. W. (1997). Testing an earthquake prediction algorithm. Pure and Applied Geophysics, 149, 219–232.CrossRefGoogle Scholar
  24. Kossobokov, V. G., Healy, J. H., Keilis-Borok, V. I., Dewey, J. W., & Khokhlov, A. V. (1992). The test of an intermediate-term earthquake prediction algorithm: the design of real-time monitoring and retroactive application. Doklady Academii Nauk, 325(1), 46–48. (in Russian).Google Scholar
  25. Kossobokov, V. G., Keilis Borok, V. I., & Smith, S. W. (1990). Localization of intermediate term earthquake prediction. Journal of Geophysical Research, 95(B12), 19763–19772.CrossRefGoogle Scholar
  26. Kossobokov, V. G., Keilis-Borok, V. I., Turcotte, D. L., & Malamud, B. D. (2000). Implications of a statistical physics approach for earthquake hazard assessment and forecasting. Pure and Applied Geophysics, 157, 2323–2349.CrossRefGoogle Scholar
  27. Kossobokov, V. G., Maeda, K., & Uyeda, S. (1999a). Precursory activation of seismicity in advance of the Kobe, 1995 earthquake. Pure and Applied Geophysics, 155, 409–423.CrossRefGoogle Scholar
  28. Kossobokov, V., Peresan, A., & Panza, G. F. (2015). On operational earthquake forecast and prediction problems. Seismological Research Letters, 86(2), 287–290. doi: 10.1785/0220140202.Google Scholar
  29. Kossobokov, V. G., Rastogi, B. K., & Gaur, V. K. (1989). On self similarity of premonitory patterns in the regions of natural and induced seismicity. Proceedings of the Indian Academy of Sciences Earth and Planetary Sciences, 98(4), 309–318.Google Scholar
  30. Kossobokov, V. G., Romashkova, L. L., Keilis-Borok, V. I., & Healy, J. H. (1999b). Testing earthquake prediction algorithms: statistically significant real-time prediction of the largest earthquakes in the Circum-Pacific, 1992-1997. Physics of the Earth and Planetary Interiors, 111(3–4), 187–196.CrossRefGoogle Scholar
  31. Kossobokov, V. G., Romashkova, L. L., Panza, G. F., & Peresan, A. (2002). Stabilizing intermediate-term medium-range earthquake predictions. Journal of Seismology and Earthquake Engineering, 4(2–3), 11–19.Google Scholar
  32. Kossobokov, V., & Shebalin, P. (2003). 4. Earthquake prediction. In V. I. Keilis-Borok & A. A. Soloviev (Eds.), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (pp. 141–207). Heidelberg: Springer.CrossRefGoogle Scholar
  33. Kossobokov, V. G., Shebalin, P. N., Healy, J. H., Dewey, J. W., & Tikhonov, I. N. (1999c). A real-time intermediate-term prediction of the October 4, 1994, and December 3, 1995, southern Kuril Islands earthquakes. In D. K. Chowdhury (Ed.), Computational Seismology and Geodynamics, 4 (pp. 57–63). Washington, D.C.: The Union.Google Scholar
  34. Kossobokov, V. G., & Soloviev, A. A. (2008). Prediction of extreme events: fundamentals and prerequisites of verification. Russian Journal of Earth Sciences, 10, ES2005. doi: 10.2205/2007ES000251.CrossRefGoogle Scholar
  35. Kossobokov, V. G., & Soloviev, A. A. (2015). Evaluating the results of testing algorithms for prediction of earthquakes. Doklady Earth Sciences, 460(2), 192–194. doi: 10.1134/S1028334X15020208.CrossRefGoogle Scholar
  36. Latoussakis, J., & Kossobokov, V. G. (1990). Intermediate term earthquake prediction in the area of Greece: application of the algorithm M8. Pure and Applied Geophysics, 134(2), 261–282.CrossRefGoogle Scholar
  37. Mojarab, M., Kossobokov, V., Memarian, H., & Zare, M. (2015). An application of earthquake prediction algorithm M8 in eastern Anatolia at the approach of the 2011 Van earthquake. Journal of Earth System Science, 124, 1047–1062. doi: 10.1007/s12040-015-0584-7.CrossRefGoogle Scholar
  38. Mojarab, M., Memarian, H., Zare, M., & Kossobokov, V. (2017). Adjusting the earthquake prediction algorithm M8 for application in Iranian Plateau with special reference to the 16 April 2013, M7.7 Saravan and the 24 September 2013, M7.7 Awaran earthquakes. Journal of Seismology. doi: 10.1007/s10950-017-9644-6.Google Scholar
  39. Molchan, G., & Romashkova, L. (2010). Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm. Geophysical Journal International, 183(3), 1525–1537. doi: 10.1111/j.1365-246X.2010.04810.x.CrossRefGoogle Scholar
  40. Peresan, A., Kossobokov, V. G., & Panza, G. F. (2012). Operational earthquake forecast/prediction. Rendiconti Lincei, Scienze Fisiche e Naturali, 23, 131–138. doi: 10.1007/s12210-012-0171-7.CrossRefGoogle Scholar
  41. Peresan, A., Kossobokov, V., Romashkova, L., & Panza, G. F. (2005). Intermediate-term middle-range earthquake predictions in Italy: a review. Earth-Science Reviews, 69(1–2), 97–132.CrossRefGoogle Scholar
  42. Romachkova, L. L., Kossobokov, V. G., Panza, G. F., & Costa, G. (1998). Intermediate-term prediction of earthquakes in Italy: algorithm M8. Pure and Applied Geophysics, 152, 37–55.CrossRefGoogle Scholar
  43. Romashkova, L. L., & Kossobokov, V. G. (2004). Intermediate-term earthquake prediction based on spatially stable clusters of alarms. Doklady Earth Sciences, 398(7), 947–949.Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRASMoscowRussian Federation
  2. 2.Geophysical CenterRASMoscowRussian Federation
  3. 3.Institut de Physique du Globe de ParisParisFrance
  4. 4.International Seismic Safety OrganizationArsitaItaly

Personalised recommendations