Skip to main content
Log in

Mathematics and Mars Exploration

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study we consider modelization associated with study of solar radiation at the surface of Mars and the Martian atmosphere. In particular, we present elements concerning retrieval of the solar irradiance spectrum on the surface of Mars from data collected by arrays of photodiodes, such as those onboard the “Curiosity” MSL-rover and other missions currently under design. By using these techniques we are able to provide an approximate description of the expected measures. In this work we have also developed a new method of tomography-based signal analysis for detection of events in the Martian atmosphere boundary layer, such as dust devils. In general, this method enables detection of events that occur briefly in time and are localized in space. This tomographic method allows us to identify the presence of more dust devils than detected previously using the same data. Finally we show new scenarios of modelization through fractional differential equations associated with diffusion processes and nonlocal problems. Such approaches could be used to model complex Martian dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfimov, G.L., Usero, D., and Vázquez, L. (2000), On complex singularities of solutions of the equation \(H u_x-u+ u^p= 0\), J. Phys. A: Math. Gen. 33(38), 6707.

  • Angstrom, A. (1929), On the Atmospheric Transmission of Sun Radiation and on Dust in the Air, Geografiska Annaler 11, 156–166.

  • Arruego, I., Díaz-Michelena, M., Jiménez, J.J., Martínez, J., Apéstigue, V., González-Guerrero, M., Azcue, J., Valverde, A., de Manuel, V., Domínguez, J.A., Martín, I., Martín, B., Álvarez, J., Álvarez, M., Hernando, C., Cerdán, M.F., Ruiz de Galarreta, C., Sánchez, J., Martínez, G., Vázquez, L., and Guerrero, H. (2010), Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission, Proceeding of the European Geosciences Union - 7th General Assembly, Vienna, Austria 02–07 May 2010. Geophysical Research Abstracts 12, EGU2010. http://meetingorganizer.copernicus.org/EGU2010/EGU2010-13330

  • Bona, J.L., Bose, D.K., and Benjamin, T.B., Solitary-wave solutions for some model equations for waves in nonlinear dispersive media, In Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Lecture Notes in Math., 503 (Springer, Berlin, 1976) pp. 207–218.

  • Bona, J.L., and Li, Y.A. (1997), Decay and analyticity of solitary waves, J. de Math. Pures et Appl. 76, 377–430.

  • Caputo, M., and Mainardi, F. (1971), Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. 2) 1, 161–198.

  • Córdoba-Jabonero, C., and Vázquez, L. (2003), Characterization of atmospheric aerosols by an in-situ photometris technique in planetary environments, SPIE 4878, 54–58.

  • Description of the Rover Environmental Monitoring Station (REMS), JPL-NASA web pages: http://msl-scicorner.jpl.nasa.gov/Instruments/REMS/. Accessed 2014.

  • Dehant, V., Banerdtb, B., Lognonnéc, P., Grottd, M., Asmarb, S., Bielee, J., Breuerd, D., Forgetf, F., Jaumannd, R., Johnsong, C., Knapmeyerd, M., Langlaisi, B., Le Feuvrei, M., Mimounj, D., Mocqueti, A., Readk, P., Rivoldinia, A., Rombergm, O., Schubertn, G., Smrekarb, S., Spohnd, T., Tortorao, P., Ulamece, S., and Vennerstrøm, S. (2012), Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution, Planetary and Space Science 68, 123–145.

  • de Lucas, E., Miguel, M.J., Mozos, D., and Vázquez, L. (2012), Martian dust devils detector over FPGA, Geosci. Instrum. Method. Data Syst. 1, 23–31.

  • El-Sayed, M.A. (1996), Fractional order diffusion-wave equation, Internat. J. Theoret. Phys. 35, 311–322.

  • Esposito, F., Debei, S., Bettanini, C., Molfese, C., Arruego, I., Colombatti, G., Harri, A.M., Montmessin, F., Wilson, C., Aboudan, A., Zaccariotto, M., Abaki, S., Bellucci, G., Berthelier, J.J., Brucato, J.R., Calcutt, S.B., Cortecchia, F., Cucciarré, F., Di Achille, G., Ferri, F., Forget, F., Friso, E., Genzer, M., Gilbert, P., Goutail, J.P., Haukka, H., Jiménez, J.J., Jiménez, S., Josset, J.L., Karatekin, O., Landis, G., Lorentz, R., Marthy, L., Martinez, J., Mennella, V., Möhlmann, D., Palomba, E., Patel, M., Pommereau, J.P., Popa, C.I., Rafkin, S., Rannou, P., Renno, N.O., Schipani, P., Schmidt, W., Segato, E., Simoes, F., Spiga, A., Valero, F., Vázquez, L., Vivat, F., Witasse, O., Yahi, S., Mugnuolo, R., and Pirrotta, S. (2013), DREAMS for the ExoMars 2016 mission: a suite of sensors for the characterization of Martian environment, EPSC Abstracts 8.

  • Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A.M., Jiménez, V., Kahanpää, H., Kowalski, L., Lepinette, A., Martín, J., Martínez-Frías, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M.A., Peinado, V., Peña, A., Polkko, J., Ramos, M., Renno, N.O., Ricart, J., Richardson, M., Rodríguez-Manfredi, J., Romeral, J., Sebastián, E., Serrano, J., de la Torre Juárez, M., Torres, J., Torrero, F., Urquí, R., Vázquez, L., Velasco, T., Verdasca, J., Zorzano, M.P., and Martín-Torres, J. (2012), REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev. 170, 583–640.

  • Gorenflo, R., Mainardi, F., and Srivastava, H.M., Special functions in fractional relaxation oscillation and fractional diffusion-wave phenomena, In Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 18–23 August 1997) (ed. Bainov D.) (VSP Publishers, Utrecht and Tokyo, 1998), pp. 195–202.

  • Ishimori, Y. (1982), Solitons in a One-Dimensional Lennard-Jones Lattice, Prog. Theor. Phys. 68, 402–410.

  • Jiménez, S., and Vázquez, L. (2014), Elements for the Retrieval of the Solar Spectrum on the Surface of Mars from an Array of Photodiodes, Proceedings: Stochastic and Infinite Dimensional Analysis, Trends of Mathematics, Birkhäuser.

  • Kittel, C., Introduction to Solid State Physics (John Wiley & Sons, New York, 1966).

  • Li, Y.A., and Bona, J.L. (1996), Analyticity of solitary-wave solutions of model equations for long waves, SIAM J. Math. Anal. 27(3), 725–737.

  • Magin, R.L., Fractional Calculus in Bioengineering (Begell House Publishers, Connecticut 2006).

  • Manko, M.A., Manko, V.I., and Vilela-Mendes, R. (2001), Tomograms and other transforms: a unified view, J. Phys. A: Math. Gen. 34, 8321–8332.

  • Manko, V.I., and Vilela-Mendes, R. (1999), Non-commutative time-frequency tomography, Phys. Let. A 263, 53–59.

  • MEIGA project main web page (in English): http://www.meiga-metnet.org//node/87. Accessed 2014.

  • METNET project main web page (in English): http://metnet.fmi.fi. Accessed 2014.

  • Pierantozzi, T., and Vázquez, L. (2005), An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like, J. Math. Phys 46, 1135123.

  • Pierantozzi, T., and Vázquez, L., A Numerical Study of Fractional Evolution-Diffusion Dirac-like Equations, In Proceedings of the Fifth International Conference on Engineering Computational Technology (ed. Topping B.H.V., Montero G., and Montenegro R.) (Civil-Comp Press, Stirlingshire, United Kingdom, 2006) paper 20.

  • Portal of the Mars Science Laboratory, Curiosity Rover (2014) JPL-NASA web pages: http://mars.jpl.nasa.gov/msl/. Accessed 2014.

  • Preston, L.J., and Dartnell, L.R. (2014), Planetary habitability: Lessons learned from terrestrial analogues, International Journal of Astrobiology 13, 81–98.

  • Rocco, A., and West, B.J. (1999), Fractional calculus and the evoluction of fractal phenomena, Physica A 265, 535–546.

  • Samko, S.G., Kilbas, A.A., and Marichev, O.I., Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, Yverdon, Switzerland, 1993).

  • Seredinska, M., and Hanyga, A. (2000), Nonlinear Hamiltonian equations with damping, J. Math. Phys 41, 2135–2155.

  • Smith, P. H., et al. (2008), Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science, J. Geophys. Res. 113, E00A18.

  • Turchetti, G., Usero, D., and Vázquez, L. (2002), Hamiltonian systems with fractional time derivative, Tamsui Oxford Journal of Mathematical Sciences 18(1), 31–44.

  • Usero, D., Propagación de ondas no lineales en medios heterogéneos (PhD. Thesis. Universidad Complutense de Madrid).

  • Usero, D., and Vázquez, L. (2003), Fractional derivative: A new formulation for damped systems, Localization and Energy Transfer in Nonlinear Systems, 296–303.

  • Vázquez, L. (2003), Fractional Diffusion Equations with Internal Degrees of Freedom, J. Comp. Math. 21, 491–494.

  • Vázquez, L. (2005), Singularity analysis of a nonlinear fractional differential equation, Revista de la Real Academia de Ciencias, Serie A, Matemáticas 99(2), 211–217.

  • Vázquez, L., and Usero, D. (2005), Ecuaciones no locales y modelos fraccionarios, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 99(2), 203–223.

  • Vázquez, L., and Vilela-Mendes, R. (2003), Fractionally coupled solutions of the diffusion equation, App. Math. Comp. 141, 125–130.

  • Vázquez, L., Zorzano, M.P., and Jiménez, S. (2007), Spectral information retrieval from integrated broadband photodiode Martian ultraviolet measurements, Optics Letters 32, 2596–2598.

  • West, B.J., Bologna, M., and Grigolini, P., Physics of Fractal Operators (Springer-Verlag, New York, 2003).

  • Zorzano, M.P., Vázquez, L., and Jiménez, S. (2009), Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements, Inverse Problems 25, 115023.

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministerio de Economía y Competitividad under Grant AYA2011-29967-C05-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Velasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco, M.P., Usero, D., Jiménez, S. et al. Mathematics and Mars Exploration. Pure Appl. Geophys. 172, 33–47 (2015). https://doi.org/10.1007/s00024-014-0870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0870-3

Keywords

Navigation