Skip to main content
Log in

Satellite Earth Observations Support CTBT Monitoring: A Case Study of the Nuclear Test in North Korea of Oct. 9, 2006 and Comparison with Seismic Results

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Comprehensive Nuclear-Test-Ban Treaty prescribes the use of seismic stations and arrays as the main measure for verification of Treaty compliance. Since the inception of the Treaty, a vast amount of open source earth observation satellite data has become available. This paper investigates the potential for combining seismic and satellite data for more effective monitoring and response. With data acquired before, during and after the alleged North Korean underground nuclear test on October 9, 2006, wide area change detection techniques using medium resolution optical/infrared satellite sensors are combined with localized high-resolution imagery to attempt to pinpoint the test location within the area identified by the seismic measurements. Problems associated with the timeliness, degree of coverage and ambiguity of the remote sensing data are pointed out, however it is generally concluded that their integration into the CTBT regime would valuably complement the existing seismic observation network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a
Fig. 6b
Fig. 6c
Fig. 6d
Fig. 6e

Similar content being viewed by others

References

  • Ammon, C. J., and Lay, T. (2007), Nuclear test illuminates USArray data quality, Eos Trans. AGU 88, 37.

  • Bonner, J., Herrmann, R. B., Harkrider, D., and Pasyanos, M. (2008), The surface wave magnitude for the 9 October 2006 North Korean nuclear explosion, Bull. Seismol. Soc. Am. 98, 2498–2506.

  • Canty, M. J., Nielsen, A. A., and Schlittenhardt, J. (2005), Sensitive change detection for remote monitoring of nuclear Treaties. Proc. 31st Int. Symp. on Remote Sensing of Environment, Global Monitoring for Sustainability and Security, St. Petersburg, Russia, 20–24 June 2005.

  • Canty, M. J., and Schlittenhardt, J. (2001), Satellite data used to locate site of 1998 Indian nuclear test, Eos Trans. AGU 82(3), 25–29.

  • Coppin, P., Jonckheere, I., Nackaerts, K., and Muys, B. (2004), Digital change detection methods in ecosystem monitoring: A review, Int. J. Remote Sens. 25(9), 1565–1596.

  • Cong, X., Schlittenhardt, J., Gutjahr, K., Soergel, U., Canty, M., and Nielsen, A. (2007), Using differential SAR interferometry for the measurement of surface displacement caused by underground nuclear explosions and comparison with optical change detection results. In Global Monitoring for Security and Stability (GMOSS)—Integrated Scientific and Technological Research Supporting Security Aspects of the European Union (eds. G. Zeug and M. Pesaresi), European Commission—Joint Research Centre, pp. 282–293.

  • Fisk, M. D. (2002), Accurate locations of nuclear explosions at the Lop Nor test site using alignment of seismograms and IKONOS satellite imagery, Bull. Seismol. Soc. Am. 92, 2911–2925.

  • General Geological Map of Korea (1945), 1:1000000, multi-color, Bibl.-Magazin BGR, Hannover.

  • Gupta, V. (1995), Locating nuclear explosions at the Chinese test site near Lop Nor, Sci. Global Security 5, 205–244.

  • Hotelling, H. (1936), Relations between two sets of variates. Biometrika 28, 321–377.

  • Kennett, B. L. N. (1991), IASPEI 1991 seismological tables, Research School of Earth Sciences, Australian National University, Canberra, Australia.

  • Kim, W. Y., and Richards, P. G. (2007), North Korean nuclear test: seismic discrimination at low yields, Eos Trans AGU 88, 158–161.

  • Koper, K. D., Herrmann, R. B., and Benz, H. M. (2008), Overview of open seismic data from the North Korean event of 9 October 2006, Seismol. Res. Lett 79, 178–185.

  • Kvaerna, T., Ringdal, F., Baadshaug, U. (2007), North Korea’s nuclear test: The capability for seismic monitoring of the North Korean test site, Seismol. Res. Lett. 78, 487–497.

  • Marshall, P. D., Springer, D. L., and Rodean, H. C. (1979), Magnitude corrections for attenuation in the upper mantle. Geophys. J. R. Astr. Soc. 57, 609–638.

  • Nielsen, A. A. (2007), The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans. Image Process, 16(2), 463–478. http://www.imm.dtu.dk/pubdb/p.php?4695.

  • Nielsen, A. A., Conradsen, K., and Simpson, J. J. (1998), Multivariate alteration detection (MAD) and MAF post-processing in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64, 1–19. http://www.imm.dtu.dk/pubdb/p.php?1220.

  • Nuttli, O. W. (1986), Yield estimates of Nevada test site explosions obtained from seismic Lg waves. J. Geophys. Res. 91, 2137–2151.

  • Patton, H. J., and Taylor, S. R. (2008), Effects of induced tensile failure on m b – M s discrimination: Contrasts between historic nuclear explosions and the North Korean test of 9 October 2006, Geophys. Res. Lett. 35, L14301, doi:10.1029/2008GL034211.

  • Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B. (2005), Image change detection algorithms: A systematic survey, IEEE Trans. Image Process. 14(4), 294–307.

  • Schlittenhardt, J. (1988), Seismic yield estimation using teleseismic P- and PKP-waves recorded at the GRF-(Gräfenberg) array, Geophys. J. 95, 163–179.

  • Schlittenhardt, J., Cong, X., Canty, M., Gutjahr, K., and Soergel, U. (2008), Satellite Earth observations support CTBT monitoring. In Remote Sensing for International Stability and Security, Integrating GMOSS Achievements in GMES (eds. G. Zeug, T. Kemper, A. Steel and M. Pesaresi), JRC Ispra, 19–20 February 2008, pp. 83–84.

  • Singh, A. (1989), Digital change detection techniques using remotely-sensed data, Internat. J. Remote Sens. 10(6), 989–1002.

  • Sulsoft (2003), AsterDTM 2.0 installation and user’s guide, Technical report, SulSoft Ltd, Porto Alegre, Brazil.

  • Tibuleac, I. M., von Seggern, D. H., Anderson, J. G., Smith, K. W., Aburto, A., and Rennie, T. (2008), Location and magnitude estimation of the 9 October 2006 Korean nuclear explosion using the southern Great Basin digital seismic network as a large-aperture array, Bull. Seismol. Soc. Am. 98, 756–767.

  • Thurber, C., Quin, H., and Richards, P. (1993), Accurate locations of nuclear explosions at Balapan, Kazakhstan, 1987 to 1989, Geophys. Res. Lett. 20, 399–402.

  • Vincent, P., Larsen, S., Galloway, D., Laczniak, R.J., Walter, W.R., Foxall, W., and Zucca, J. J. (2003), New signatures of underground nuclear tests revealed by satellite radar Interferometry, Geophys. Res Lett. 30(22), 2141.

  • Zhao, L.-F., Xie, X.-B., Wang, W.-M., and Yao, Z.-X. (2008), The regional seismic characteristics of the October 9, 2006 North Korean nuclear test, Bull. Seismol. Soc. Am. 98, 2571–2589.

Download references

Acknowledgments

This work has been carried out in part within the framework of the Global Monitoring for Security and Stability (GMOSS) Network of Excellence initiated by the European Commission. The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for access to waveform data required in this study. ASTER images Courtesy NASA/JPL-Caltech. EROS image © 2002 ImageSat International N.V., Licensed by ImageSat International N.V. Includes QuickBird and/or Wold-View-1 Products © DigitalGlobeTM, distributed by Eurimage. Certain figures of this paper were generated using the software by “Wessel, P., and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. Amer. Geophys. U., vol. 76 (33), pp. 329, 1995”.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schlittenhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlittenhardt, J., Canty, M. & Grünberg, I. Satellite Earth Observations Support CTBT Monitoring: A Case Study of the Nuclear Test in North Korea of Oct. 9, 2006 and Comparison with Seismic Results. Pure Appl. Geophys. 167, 601–618 (2010). https://doi.org/10.1007/s00024-009-0036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-009-0036-x

Keywords

Navigation