Skip to main content
Log in

A Convergent \(\varvec{\frac{1}{N}}\) Expansion for GUE

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We show that the asymptotic 1 / N expansion for the averages of linear statistics of the GUE is convergent when the test function is an entire function of order two and finite type. This allows to fully recover the mean eigenvalue density function for finite N from the coefficients of the expansion thus providing a resummation procedure. As an intermediate result, we compute the bilateral Laplace transform of the GUE reproducing kernel in the half-sum variable, generalizing a formula of Haagerup and Thorbjørnsen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S., Pastur, L., Shcherbina, M.: On the \(1/n\) expansion for some unitary invariant ensembles of random matrices. Dedicated to Joel L. Lebowitz. Commun. Math. Phys. 224(1), 271–305 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrix Theory. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Borot, G., Guionnet, A.: Asymptotic expansion of \(\beta \) matrix models in the one-cut regime. Commun. Math. Phys. 317(2), 447–483 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Disertori, M.: Density of states for GUE through supersymmetric approach. Rev. Math. Phys. 16(9), 1191–1225 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ercolani, N.M., Mclaughlin, K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 2003(14), 755–820 (2003)

    Article  MathSciNet  Google Scholar 

  6. Fyodorov, Y. V.: Introduction to the random matrix theory: Gaussian Unitary Ensemble and Beyond. In: Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., vol. 322, pp. 31–78. Cambridge University Press, Cambridge (2005)

  7. Götze, F., Tikhomirov, A.: The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math. 3(4), 666–704 (2005)

    Article  MathSciNet  Google Scholar 

  8. Haagerup, U., Thorbjørnsen, S.: Random matrices with complex Gaussian entries. Expo. Math. 21(4), 293–337 (2003)

    Article  MathSciNet  Google Scholar 

  9. Haagerup, U., Thorbjørnsen, S.: Asymptotic expansions for the Gaussian Unitary Ensemble. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(1), 1250003 (2012)

    Article  MathSciNet  Google Scholar 

  10. Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Inoue, A., Nomura, Y.: Some refinements of Wigner’s semi-circle law for Gaussian random matrices using superanalysis. Asymptot. Anal. 23(3-4), 329–375 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Ja. Levin, B.: Distribution of Zeros of Entire Functions. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. Revised edition. Translations of Mathematical Monographs, 5. American Mathematical Society, Providence, R.I. (1980)

  13. Shamis, M.: Density of states for Gaussian unitary ensemble, Gaussian orthogonal ensemble, and interpolating ensembles through supersymmetric approach. J. Math. Phys. 54(11), 113505 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Szegő, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  15. Wigner, E.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–328 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to my supervisor, Sasha Sodin, for his continuous help and advice. I also would like to thank Yan Fyodorov for helpful discussions and for a suggestion leading to the current version of Theorem 2. I would like to thank Andrei Iacob for copy editing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Offer Kopelevitch.

Additional information

Communicated by Anton Bovier.

Supported in part by the European Research Council start-up Grant 639305 (SPECTRUM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopelevitch, O. A Convergent \(\varvec{\frac{1}{N}}\) Expansion for GUE. Ann. Henri Poincaré 19, 3883–3899 (2018). https://doi.org/10.1007/s00023-018-0727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0727-x

Navigation