Skip to main content
Log in

Tiling Deformations, Cohomology, and Orbit Equivalence of Tiling Spaces

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study homeomorphisms of minimal and uniquely ergodic tiling spaces with finite local complexity (FLC), of which suspensions of (minimal and uniquely ergodic) d-dimensional subshifts are an example, and orbit equivalence of tiling spaces with (possibly) infinite local complexity (ILC). In the FLC case, we construct a cohomological invariant of homeomorphisms and show that all homeomorphisms are a combination of tiling deformations, maps homotopic to the identity (known as quasi-translations), and local equivalences (MLD). In the ILC case, we construct a cohomological invariant in the so-called weak cohomology and show that all orbit equivalences are combinations of tiling deformations, quasi-translations, and topological conjugacies. These generalize results of Parry and Sullivan to higher dimensions. We also show that homeomorphisms (FLC) or orbit equivalences (ILC) are completely parametrized by the appropriate cohomological invariants. Finally, we show that, under suitable cohomological conditions, continuous maps between tiling spaces are homotopic to compositions of tiling deformations and either local derivations (FLC) or factor maps (ILC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliste-Prieto, J., Coronel, D., Cortez, M.I., Durand, F., Petite, S.: Linearly repetitive delone sets. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order, Volume 309 of Progress in Mathematics, pp. 195–222. Springer, Basel (2015)

    Chapter  Google Scholar 

  2. Bellissard, J.V.: Delone sets and material science: a program. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order. Progress in Mathematics, vol. 309. Birkhäuser, Basel (2015). https://doi.org/10.1007/978-3-0348-0903-0_11

  3. Bellissard, J.: Modeling Liquids and Bulk Metallic Glasses (Oral Communication). Mathematics of Novel Materials, Mittag-Leffler Institute, Djursholm (2015)

    Google Scholar 

  4. Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boulmezaoud, H., Kellendonk, J.: Comparing different versions of tiling cohomology. Topol. Appl. 157(14), 2225–2239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyle, M., Handelman, D.: Orbit equivalence, flow equivalence and ordered cohomology. Israel J. Math. 95, 169–210 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, A., Sadun, L.: When size matters: subshifts and their related tiling spaces. Ergod. Theory Dyn. Syst. 23, 1043–1057 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clark, A., Sadun, L.: When shape matters: deformations of tiling spaces. Ergod. Theory Dyn. Syst. 26(1), 69–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cortez, M., Durand, F., Petite, S.: Linearly repetitive delone systems have a finite number of nonperiodic delone system factors. Proc. Am. Math. Soc. 138(3), 1033–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Frank, N., Sadun, L.: Fusion tilings with infinite local complexity. Preprint (2012)

  12. Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \(C^*\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Hunton, J.: Oral communication. Workshop on aperiodic order, Leicester (2015)

  14. Julien, A.: Complexity as a homeomorphism invariant for tiling spaces. Ann. Inst. Fourier 67(2), 539–577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kellendonk, J.: Pattern-equivariant functions and cohomology. J. Phys. A 36(21), 5765–5772 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kellendonk, J.: Pattern equivariant functions, deformations and equivalence of tiling spaces. Ergod. Theory Dyn. Syst. 28(4), 1153–1176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kellendonk, J., Putnam, I.F.: The Ruelle–Sullivan map for actions of \(\mathbb{R}^n\). Math. Ann. 334(3), 693–711 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kellendonk, J., Sadun, L.: Meyer sets, topological eigenvalues, and Cantor fiber bundles. J. Lond. Math. Soc. (2) 89(1), 114–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kwapisz, J.: Topological friction in aperiodic minimal \(\mathbb{{R}}^m\)-actions. Fund. Math. 207(2), 175–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, C.C., Schochet, C.L.: Global Analysis on Foliated Spaces. Volume 9 of Mathematical Sciences Research Institute Publications, 2nd edn. Cambridge University Press, New York (2006)

    Google Scholar 

  21. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parry, B., Sullivan, D.: A topological invariant of flows on \(1\)-dimensional spaces. Topology 14(4), 297–299 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parry, W., Tuncel, S.: Classification Problems in Ergodic Theory, Volume 67 of London Mathematical Society Lecture Note Series, Statistics: Textbooks and Monographs, 41. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  24. Parry, W., Tuncel, S.: On the stochastic and topological structure of Markov chains. Bull. Lond. Math. Soc. 14(1), 16–27 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petersen, K.: Factor maps between tiling dynamical systems. Forum Math. 11, 503–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Radin, C.: The pinwheel tilings of the plane. Ann. Math. 26, 289–306 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Radin, C., Sadun, L.: Isomorphism of hierarchical structures. Ergod. Theory Dyn. Syst. 21(4), 1239–1248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rand, B., Sadun, L.: An approximation theorem for maps between tiling spaces. Disc. Cont. Dynam. Syst. 29, 323–326 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sadun, L.: Topology of Tiling Spaces. Volume 46 of University Lecture Series. American Mathematical Society, Providence (2008)

    Google Scholar 

  30. Sadun, L.: Cohomology of hierarchical tilings. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order. Progress in Mathematics, vol. 309. Birkhäuser, Basel (2015). https://doi.org/10.1007/978-3-0348-0903-0_3

Download references

Acknowledgements

Work of the second author is partially supported by NSF Grant DMS-1101326. We thank Johannes Kellendonk and Christian Skau for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Julien.

Additional information

Communicated by Dmitry Dolgopyat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julien, A., Sadun, L. Tiling Deformations, Cohomology, and Orbit Equivalence of Tiling Spaces. Ann. Henri Poincaré 19, 3053–3088 (2018). https://doi.org/10.1007/s00023-018-0713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0713-3

Navigation