Skip to main content
Log in

Inverse Scattering at Fixed Energy for Radial Magnetic Schrödinger Operators with Obstacle in Dimension Two

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study an inverse scattering problem at fixed energy for radial magnetic Schrödinger operators on \(\mathbb {R}^2 {{\setminus }} B(0,r_0)\), where \(r_0\) is a positive and arbitrarily small radius. We assume that the magnetic potential A satisfies a gauge condition, and we consider the class \(\mathcal {C}\) of smooth, radial and compactly supported electric potentials and magnetic fields denoted by V and B, respectively. If (VB) and \((\tilde{V},\tilde{B})\) are two couples belonging to \(\mathcal {C}\), we then show that if the corresponding phase shifts \(\delta _l\) and \(\tilde{\delta }_l\) (i.e., the scattering data at fixed energy) coincide for all \(l \in \mathcal {L}\), where \(\mathcal {L} \subset \mathbb {N}^{\star }\) satisfies the Müntz condition \(\sum _{l \in \mathcal {L}} \frac{1}{l} = + \infty \), then \(V(x) = \tilde{V}(x)\) and \(B(x) = \tilde{B}(x)\) outside the obstacle \(B(0,r_0)\). The proof uses the complex angular momentum method and is close in spirit to the celebrated Borg–Marchenko uniqueness theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arians, S.: Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38(6), 2761–2773 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennewitz, C.: A proof of the local Borg–Marchenko Theorem. Commun. Math. Phys. 211, 131–132 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Boas, R.P.: Entire Functions. Academic Press, Cambridge (1954)

    MATH  Google Scholar 

  4. Collins, P.D.B.: An introduction to Regge Theory and High Energy Physics. Cambridge Monographs on Mathematical Physics, Vol. 4 (1977)

  5. Daudé, T., Gobin, D., Nicoleau, F.: Local inverse scattering results at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Probl. Imaging 10(3), 659–688 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daudé, T., Kamran, N., Nicoleau, F.: Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces. Inverse Probl. (2015). https://doi.org/10.1088/0266-5611/31/12/125009

  7. Daudé, T., Kamran, N., Nicoleau, F.: Non-uniqueness results for the anisotropic Calderon problem with data measured on disjoint sets. To appear in Ann. Henri Poincaré, (2015). ArXiv:1510.06559

  8. Daudé, T., Nicoleau, F.: Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr–Newman–De Sitter black holes. Memoirs of the AMS 247 no. 1170 (2017)

  9. Daudé, T., Nicoleau, F.: Inverse scattering at fixed energy in de Sitter–Reissner–Nordström black holes. Ann. Henri Poincaré 12, 1–47 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Daudé, T., Nicoleau, F.: Local inverse scattering at a fixed energy for radial Schrödinger operators and localization of the Regge poles. Ann. Henri Poincaré 17, 2849–2904 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. de Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 2(115), 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. de Alfaro, V., Regge, T.: Potential Scattering. North-Holland Publishing Co., Amsterdam; Interscience Publishers Division John Wiley ans Sons, Inc. (1965)

  13. de Oliveira, C.R., Pereira, M.: Scattering and self-adjoint extensions of the Aharonov–Bohm Hamiltonian. J. Phys. A 43, 1751–8113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eskin, G., Ralston, J.: Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy. Commun. Math. Phys. 173, 199–224 (1995)

    Article  ADS  MATH  Google Scholar 

  15. Eskin, G., Ralston, J.: Inverse scattering problems for Schrödinger operators with magnetic and electric potentials. IMA Vol. Math. Appl. 90, 147–166 (1997)

    MATH  Google Scholar 

  16. Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Grinevich, P.G., Novikov, R.: Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials. Commun. Math. Phys. 174, 409–446 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Krupchyk, K., Uhlmann, G.: Inverse problems for magnetic Schrödinger operators in transversally anisotropic geometries. Preprint. ArXiv:1702.07974 (2017)

  19. Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  20. Loeffel, J.-J.: On an inverse problem in potential scattering theory. Ann. Iinst. H. Poincaré Phys. Théor. 8, 339–447 (1968)

    MathSciNet  MATH  Google Scholar 

  21. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  22. Newton, R.G.: Scattering theory of waves and particles. Dover Publications, Mineola, (2002) (Reprint of the 1982 second edition New York: Springer, with list of errata prepared for this edition by the author)

  23. Nicoleau, F.: Matrices de diffusion pour l’opérateur de Schrödinger avec champ magnétique. Phénomène de Aharonov-B-ohm. Ann. Inst. H. Poincaré Phys. Théor. 61(4), 329–346 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Nicoleau, F.: A stationary approach to inverse scattering for Schrödinger operators with first order perturbation. Commun. Partial Differ. Equ. 22, 527–553 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nicoleau, F.: An inverse scattering problem with the Aharonov–Bohm effect. J. Math. Phys. 41(8), 5223–5237 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Novikov, R.G.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103(2), 409–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Novikov, R.G.: The inverse scattering problem on a fixed energy level for the three-dimensional Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161(3), 569–595 (1994)

    Article  ADS  MATH  Google Scholar 

  28. Päivärinta, L., Salo, M., Uhlmann, G.: Inverse scattering for the magnetic Schrödinger operator. J. Funct. Anal. 258, 1771–1798 (2010)

    Article  MATH  Google Scholar 

  29. Pankrashkin, K., Richard, S.: Spectral and scattering theory for the Aharonov Bohm operators. Rev. Math. Phys. 23, 53–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramm, A.G.: An inverse scattering problem with part of the fixed-energy phase shifts. Commun. Math. Phys. 207(1), 231–247 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Scattering Theory, vol. 3. Academic Press, Cambridge (1979)

    MATH  Google Scholar 

  32. Regge, T.: Introduction to complex orbita momenta. Nuevo Cimento XIV 5, 951–976 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Roux, Ph, Yafaev, D.: On the mathematical theory of the Aharonov–Bohm effect. J. Phys. A 35, 7481–7492 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Rudin, W.: Real and Complex Analysis, Third edn. McGraw-Hill Book Company, New York (1986)

    MATH  Google Scholar 

  35. Ruisjenaars, S.N.M.: The Aharonov–Bohm effect and scattering theory. Ann. Phys. (NY) 146, 1–34 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  36. Sabatier, P.: Asymptotic properties of the potentials in the inverse scattering problem at fixed energy. J. Math. Phys. 7, 1515–1531 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  37. Simon, B.: A new approach to inverse spectral theory. I. Fundam. Formal. Ann. Math. 150, 1–29 (1999)

    MathSciNet  Google Scholar 

  38. Tamura, H.: Shadow scattering by magnetic fields in two dimensions. Annales Inst. Henri Poincaré Phys. Theor. 63(3), 253–276 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Teschl, G.: Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics Vol. 99, AMS Providence, Rhode Island (2009)

  40. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  41. Weder, R.: The Aharonov–Bohm effect and time-dependent inverse scattering theory. Inverse Probl. 18, 1041–1056 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Weder, R., Yafaev, D.R.: On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity. Inverse Probl. 21, 1937–1952 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Yafaev, D.R.: Scattering by magnetic fields. Algebra i Analiz 17, 244–272 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Gobin.

Additional information

Communicated by Jan Dereziński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobin, D. Inverse Scattering at Fixed Energy for Radial Magnetic Schrödinger Operators with Obstacle in Dimension Two. Ann. Henri Poincaré 19, 3089–3128 (2018). https://doi.org/10.1007/s00023-018-0707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0707-1

Navigation