Skip to main content
Log in

Level 2.5 Large Deviations for Continuous-Time Markov Chains with Time Periodic Rates

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider an irreducible continuous-time Markov chain on a finite state space and with time periodic jump rates and prove the joint large deviation principle for the empirical measure and flow and the joint large deviation principle for the empirical measure and current. By contraction, we get the large deviation principle of three types of entropy production flow. We derive some Gallavotti–Cohen duality relations and discuss some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barato, A.C., Seifert, U.: Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Billingsley, P.: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

  3. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bertini, L., Faggionato, A., Gabrielli, D.: From level 2.5 to level 2 large deviations for continuous time Markov chains. Markov Process. Relat. Fields 20, 545–562 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bertini, L., Faggionato, A., Gabrielli, D.: Large deviations of the empirical flow for continuous time Markov chains. Ann. Inst. H. Poincaré Probab. Stat. 51, 867–900 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bertini, L., Faggionato, A., Gabrielli, D.: Flows, currents, and cycles for Markov chains: large deviation asymptotics. Stoch. Proc. Appl. 125, 2786–2819 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blickle, V., Bechinger, C.: Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143–146 (2012)

    Article  Google Scholar 

  8. Brandner, K., Saito, K., Seifert, U.: Thermodynamics of micro-and nano-systems driven by periodic temperature variations. Phys. Rev. X 5, 031019 (2015)

    Google Scholar 

  9. Brezis, H.: Funcional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  10. Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. P08001 (2006)

  11. Chernyak, V.Y., Sinitsyn, N.A.: Pumping restriction theorem for stochastic networks. Phys. Rev. Lett. 101, 160601 (2008)

    Article  ADS  Google Scholar 

  12. Chernyak, V.Y., Chertkov, M., Malinin, S.V., Teodorescu, R.: Non-equilibrium thermodynamics and topology of currents. J. Stat. Phys. 137, 109–147 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chetrite, R., Barato, A.C.: A formal view on level 2.5 large deviations and fluctuation relations. J. Stat. Phys. 160(5), 1154–1172 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Crooks, G.E.: Non-equilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481–1487 (1998)

    Article  ADS  MATH  Google Scholar 

  16. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    Article  ADS  Google Scholar 

  17. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  18. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  19. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. Comm. Pure Appl. Math. (I) 28, 1–47 (1975); (II) 28, 279–301 (1975); (III) 29, 389–461 (1976); (IV) 36, 183–212 (1983)

  20. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. Comm. Pure Appl. Math. II(28), 279–301 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. Comm. Pure Appl. Math. III(29), 389–461 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. Comm. Pure Appl. Math. (IV) 36, 183–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., Feringa, B.L.: Nanomotor rotates microscale objects. Nature 440, 163 (2006)

    Article  ADS  Google Scholar 

  24. De la Fortelle, A.: Large deviation principle for Markov chains in continuous time. Prob. Inf. Transm. 37, 120 (2001)

    Article  MATH  Google Scholar 

  25. Faggionato, A., Gabrielli, D., Ribezzi Crivellari, M.: Non-equilibrium thermodynamics of piecewise deterministic Markov processes. J. Stat. Phys. 137, 259–304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Faggionato, A., Mathieu, P.: Linear response and Nyquist relation in periodically driven Markov processes (Forthcoming)

  27. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    Article  ADS  Google Scholar 

  28. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  ADS  Google Scholar 

  29. Gingrich, T., Horowitz, J., Perunov, N., England, J.: Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116(12), 120601 (2016)

    Article  ADS  Google Scholar 

  30. Gingrich, T., Rotskoff, G., Horowitz, J.: Inferring dissipation from current fluctuations. J. Phys. A: Math. Theor. 50(18), 184004 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ge, H., Jiang, D.-Q., Qian, M.: Reversibility and entropy production of inhomogeneous Markov chains. J. Appl. Probab. 43, 1028–1043 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harris, R.J., Schütz, J.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020 (2007)

  33. Hanggi, P., Thomas, H.: Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207–319 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)

    Article  ADS  Google Scholar 

  35. Höpfner, R., Kutoyants, Y.: Estimating discontinuous periodic signals in a time inhomogeneous diffusion. Stat. Inference Stoch. Proc. 13, 193–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jensen, L.H.: Large deviations of the asymmetric simple exclusion process in one dimension. Ph.D. Thesis, Courant Institute NYU (2000)

  37. Joubaud, R., Pavliotis, G.A., Stoltz, G.: Langevin dynamics with space-time periodic nonequilibrium forcing. J. Stat. Phys. 158, 1–36 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kaiser, M., Jack, R.L., Zimmer, J.: Canonical structure and orthogonality of forces and currents in irreversible Markov chains. J. Stat. Phys. 170, 1019–1050 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kesidis, G., Walrand, J.: Relative entropy between Markov transition rate matrices. IEEE Trans. Inf. Theory 39, 10561057 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kusuoka, S., Kuwada, K., Tamura, Y.: Large deviation for stochastic line integrals as \(L^p\)-currents. Probab. Theory Relat. Fields 147, 649–667 (2010)

    Article  MATH  Google Scholar 

  41. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  42. Lazarescu, A.: The physicist’s companion to current fluctuations: one-dimensional bulk-driven lattice gases. J. Phys. A 48, 503001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, Q., Fuks, G., Moulin, E., Maaloum, M., Rawiso, M., Kulic, I., Foy, J.T., Giuseppone, N.: Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015)

    Article  ADS  Google Scholar 

  44. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Maes, C., Netǒcný, K., Thomas, S.R.: General no-go condition for stochastic pumping. J. Chem. Phys. 132, 234116 (2010)

    Article  ADS  Google Scholar 

  46. Maes, C., Netǒcný, K., Wynants, B.: Steady state statistics of driven diffusions. Physica A 387, 2675 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Maes, C., Netǒcný, K.: The canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. Europhys. Lett. 82, 30003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. Mariani, M.: A \(\Gamma \)-convergence approach to large deviations. Ann. Sc. Norm. Super. Pisa Cl. Sci 18, 951–976 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Martinez, I.A., Roldán, É., Dinis, L., Petrov, D., Parrondo, J.M.R., Rica, R.A.: Brownian Carnot engine. Nat. Phys. 12, 67–70 (2016)

    Article  Google Scholar 

  50. McNamara, B., Wiesenfeld, K.: Theory of stochastic resonance. Phys. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  51. Mörters, P., Peres, Y.: Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  52. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  53. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Pietzonka, P., Barato, A.C., Seifert, U.: Universal bounds on current fluctuations. Phys. Rev. E 93(5), 052145 (2016)

    Article  ADS  MATH  Google Scholar 

  55. Pietzonka, P., Barato, A.C., Seifert, U.: Affinity- and topology-dependent bound on current fluctuations. J. Phys. A: Math. Theor. 49 (34), 34LT01 (2016)

  56. Proesmans, K., Van den Broeck, C.: Onsager coefficients in periodically driven systems. Phys. Rev. Lett. 115, 090601 (2015)

    Article  ADS  Google Scholar 

  57. Proesmans, K., Cleuren, B., Van den Broeck, C.: Linear stochastic thermodynamics for periodically driven systems. J. Stat. Mech. 023202 (2016)

  58. Rahav, S., Horowitz, J., Jarzynski, C.: Directed flow in nonadiabatic stochastic pumps. Phys. Rev. Lett. 101, 140602 (2008)

    Article  ADS  Google Scholar 

  59. Ray, S., Barato, A.C.: Stochastic thermodynamics of periodically driven systems: fluctuation theorem for currents and unification of two classes. Phys. Rev. E 96, 052120 (2018)

    Article  Google Scholar 

  60. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Renger, M.D.R.: Large deviations of specific empirical fluxes of independent Markov chains, with implications for Macroscopic Fluctuation Theory. Weierstrass Institute, Preprint 2375 (2017)

  62. Rotskoff, G.M.: Mapping current fluctuations of stochastic pumps to nonequilibrium steady states. Phys. Rev. E 95, 030101 (2017)

    Article  ADS  Google Scholar 

  63. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Schuler, S., Speck, T., Tietz, C., Wrachtrup, J., Seifert, U.: Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005)

    Article  ADS  Google Scholar 

  65. Sekimoto, K.: Stochastic energetics. Lecture Notes in Physics, vol. 799. Springer, Berlin (2010)

  66. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  67. Singh, N.: Onsager-Machlup theory and work fluctuation theorem for a harmonically driven Brownian particle. J. Stat. Phys. 131, 405–414 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Singh, N., Wynants, B.: Dynamical fluctuations for periodically driven diffusions. J. Stat. Mech. P03007 (2010)

  69. Sinitsyn, N.A., Akimov, A., Chernyak, V.Y.: Supersymmetry and fluctuation relations for currents in closed networks. Phys. Rev. E 83, 021107 (2011)

    Article  ADS  Google Scholar 

  70. Verley, G., Van den Broeck, C., Esposito, M.: Modulated two-level system: exact work statistics. Phys. Rev. E 88, 032137 (2013)

    Article  ADS  Google Scholar 

  71. Izumida, Y., Okuda, K.: Onsager coefficients of a finite-time Carnot cycle. Phys. Rev. E 80, 021121 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  72. Izumida, Y., Okuda, K.: Linear irreversible heat engines based on local equilibrium assumptions. New J. Phys. 17, 085011 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their careful reading and suggestions. A. Faggionato and D. Gabrielli thank the Institute Henri Poincaré for the kind hospitality and the support during the trimester “Stochastic Dynamics Out of Equilibrium,” in which they have worked on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Faggionato.

Additional information

Communicated by Christian Maes.

The work of L. Bertini and A. Faggionato has been supported by PRIN 20155PAWZB “Large Scale Random Structures,” while the work of R. Chetrite has been supported by the French Ministry of Education Grant ANR-15-CE40-0020-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, L., Chetrite, R., Faggionato, A. et al. Level 2.5 Large Deviations for Continuous-Time Markov Chains with Time Periodic Rates. Ann. Henri Poincaré 19, 3197–3238 (2018). https://doi.org/10.1007/s00023-018-0705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0705-3

Navigation