Advertisement

Annales Henri Poincaré

, Volume 19, Issue 7, pp 2101–2114 | Cite as

Space-Time Analytic Smoothing Effect for Global Solutions to a System of Nonlinear Schrödinger Equations with Large Data

  • Gaku Hoshino
Article
  • 46 Downloads

Abstract

We study the Cauchy problem for a quadratic system of nonlinear Schrödinger equations in \(L^2\)-setting with the space dimension \(n=1,2\) or 3. Recently, the author showed that the local solution for the system of nonlinear Schrödinger equations has space-time analytic smoothing effect for data with exponentially weighted \(L^2\)-norm. Also as is well known, the quadratic nonlinear Schrödinger equations have global solutions in \(L^2\)-subcritical setting. Our main purpose of this study is to show real analyticity in both space and time variables of the unique global solution with data which has large exponentially weighted \(L^2\)-norm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Amer. Math. Soc., Providence (2003)zbMATHGoogle Scholar
  2. 2.
    Colin, M., Colin, T., Ohta, M.: Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2211–2226 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Bouard, A.: Analytic solution to non elliptic non linear Schrödinger equations. J. Differ. Equ. 104, 196–213 (1993)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrodinger equations. I: The Cauchy problem. J. Funct. Anal. 32, 1–32 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hayashi, N., Kato, K.: Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations. Commun. Math. Phys. 184, 273–300 (1997)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Hayashi, N., Li, C., Naumkin, P.I.: On a system of nonlinear Schrödinger equations in 2d. Differ. Int. Equ. 24, 417–434 (2011)zbMATHGoogle Scholar
  7. 7.
    Hayashi, N., Li, C., Naumkin, P.I.: Modified wave operator for a system of nonlinear Schrödinger equations in 2d. Commun. Partial Differ. Equ. 37, 947–968 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hayashi, N., Li, C., Ozawa, T.: Small data scattering for a system of nonlinear Schrödinger equations. Differ. Equ. Appl. 3, 415–426 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hayashi, N., Ozawa, T., Tanaka, K.: On a system of nonlinear Schrödinger equations with quadratic interaction. Ann. Inst. Henri Poincaré-AN 30, 661–690 (2013)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Hayashi, N., Saitoh, S.: Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. Henri Poincaré, Phys. Théor 52, 163–173 (1990)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hayashi, N., Saitoh, S.: Analyticity and global existence of small solutions to some nonlinear Schrödinger equations. Commun. Math. Phys. 129, 27–41 (1990)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Hoshino, G.: Analytic smoothing effect for global solutions to a system of nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 24, 62 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hoshino, G.: Space-time analytic smoothing effect for a system of nonlinear Schrödinger equations with non pseudo-conformally invariant interactions. Commun. Partial Differ. Equ. 42, 802–819 (2017)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for a system of nonlinear Schrödinger equations. Differ. Equ. Appl. 5, 395–408 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödinger equations with quintic nonlinearity. J. Math. Anal. Appl. 419, 285–297 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for a system of Schrödinger equations with two wave interaction. Adv. Differ. Equ. 20, 697–716 (2015)zbMATHGoogle Scholar
  17. 17.
    Hoshino, G., Ozawa, T.: Space-time analytic smoothing effect for the pseudo-conformally invariant Schrödinger equations. Nonlinear Differ. Equ. Appl. 23, 3 (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor 46, 113–129 (1987)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kato, T., Masuda, K.: Nonlinear evolution equations and analyticity. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 455–467 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nakamitsu, K.: Analytic finite energy solutions of the nonlinear Schrödinger equation. Commun. Math. Phys. 260, 117–130 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ogawa, T., Uriya, K.: Final state problem for a quadratic nonlinear Schrödinger system in two space dimensions with mass resonance. J. Differ. Equ. 258, 483–583 (2015)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Ozawa, T.: Remarks on proofs of conservation laws for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 25, 403–408 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ozawa, T., Sunagawa, H.: Small data blow-up for a system of nonlinear Schrödinger equations. J. Math. Anal. Appl. 399, 147–155 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ozawa, T., Yamauchi, K.: Remarks on analytic smoothing effect for the Schrödinger equation. Math. Z. 261, 511–524 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ozawa, T., Yamauchi, K.: Analytic smoothing effect for global solutions to nonlinear Schrödinger equation. J. Math. Anal. Appl. 364, 492–497 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sasaki, H.: Small analytic solutions to the Hartree equation. J. Funct. Anal. 270, 1064–1090 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Appl. Math. Sci., vol. 139. Springer, Berlin (1999)zbMATHGoogle Scholar
  28. 28.
    Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. 30, 115–125 (1987)zbMATHGoogle Scholar
  29. 29.
    Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Yan, K., Yin, Z.: Analytic solutions of the Cauchy problem for two-component shallow water systems. Math. Z. 269, 1113–1127 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Osaka UniversityToyonakaJapan

Personalised recommendations