Advertisement

Annales Henri Poincaré

, Volume 19, Issue 6, pp 1611–1645 | Cite as

Large Strebel Graphs and (3,2) Liouville CFT

  • Séverin Charbonnier
  • Bertrand Eynard
  • François David
Article

Abstract

2D quantum gravity is the idea that a set of discretized surfaces (called map, a graph on a surface), equipped with a graph measure, converges in the large size limit (large number of faces) to a conformal field theory (CFT), and in the simplest case to the simplest CFT known as pure gravity, also known as the gravity dressed (3,2) minimal model. Here, we consider the set of planar Strebel graphs (planar trivalent metric graphs) with fixed perimeter faces, with the measure product of Lebesgue measure of all edge lengths, submitted to the perimeter constraints. We prove that expectation values of a large class of observables indeed converge toward the CFT amplitudes of the (3,2) minimal model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

BE was supported by the ERC Starting Grant no. 335739 “Quantum fields and knot homologies” funded by the European Research Council under the European Union’s Seventh Framework Programme. BE is also partly supported by the ANR Grant Quantact: ANR-16-CE40-0017. We thank P. di Francesco for his interest and useful conversations.

References

  1. 1.
    Benjamini, I.: Random Planar Metrics. Unpublished (2009). http://www.wisdom.weizmann.ac.il/~itai/randomplanar2.pdf
  2. 2.
    David, F.: Conformal field theories coupled to 2-d gravity in the conformal gauge. Mod. Phys. Lett. A 03, 1651–1656 (1988a)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    David, F., Eynard, B.: Planar maps, circle patterns and 2D gravity. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 1, 139–183 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342, 869 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  5. 5.
    Di Francesco, P., Kutasov, D.: Unitary minimal models coupled to 2D quantum gravity. Nucl. Phys. B 342, 589–624 (1990)CrossRefADSGoogle Scholar
  6. 6.
    Distler, J., Kawai, H.: Conformal field theory and 2-d quantum gravity. Nucl. Phys. B 321, 509 (1989)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Douglas, M.R., Shenker, S.H.: Strings in less than one dimension. Nucl. Phys. B 335, 635–654 (1990)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Eynard, B.: Recursion between Mumford volumes of moduli spaces. Unpublished (2007). arXiv:0706.4403
  9. 9.
    Eynard, B.: Intersection numbers of spectral curves. Unpublished (2011). arXiv:1104.0176
  10. 10.
    Eynard, B.: Counting Surfaces. Springer, New York (2016). ISBN: 9783764387969CrossRefzbMATHGoogle Scholar
  11. 11.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A 3, 819 (1988)CrossRefADSGoogle Scholar
  14. 14.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. 15.
    Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41, 2880–2960 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210, 319–401 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nakayama, Y.: Liouville field theory: a decade after the revolution. Int. J. Modern Phys. A 19, 2771–2930 (2004)MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. 18.
    Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113, 299–339 (1987)CrossRefzbMATHADSGoogle Scholar
  19. 19.
    Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–210 (1981)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Strebel, K.: Quadratic Differentials. Springer, New York (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Séverin Charbonnier
    • 1
  • Bertrand Eynard
    • 1
    • 2
  • François David
    • 1
  1. 1.Institut de physique théorique, CEA, CNRSUniversité Paris SaclayGif-sur-YvetteFrance
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations