Skip to main content
Log in

Completeness of the Bethe Ansatz for an Open \(\varvec{q}\)-Boson System with Integrable Boundary Interactions

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We employ a discrete integral-reflection representation of the double affine Hecke algebra of type \(C^\vee C\) at the critical level \(\text {q}=1\), to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoliubov, N.M.: Boxed plane partitions as an exactly solvable boson model. J. Phys. A 38, 9415–9430 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bogoliubov, N.M., Bullough, R.K.: A q-deformed completely integrable Bose gas model. J. Phys. A 25, 4057–4071 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bogoliubov, N.M., Izergin, A.G., Kitanine, A.N.: Correlation functions for a strongly correlated boson system. Nuclear Phys. B 516, 501–528 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the \(q\)-Boson particle system. Compos. Math. 151, 1–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Commun. Math. Phys. 339, 1167–1245 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Carey, A.L., Langmann, E.: Loop groups, anyons and the Calogero–Sutherland model. Commun. Math. Phys. 201, 1–34 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cherednik, I.: Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series 319, Cambridge University Press, Cambridge (2005)

  8. Davies, B., Gutkin, E.: Intertwining operators and the quantum inverse method for the nonlinear Schrödinger equation. Phys. A 151, 167–192 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 347–376 (1993)

    Article  ADS  MATH  Google Scholar 

  10. Duval, A., Pasquier, V.: \(q\)-bosons, Toda lattice, Pieri rules and Baxter \(q\)-operator. J. Phys. A 49, 1540006 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emsiz, E., Opdam, E.M., Stokman, J.V.: Periodic integrable systems with delta-potentials. Commun. Math. Phys. 264, 191–225 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Emsiz, E., Opdam, E.M., Stokman, J.V.: Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Math. (N.S.) 14, 571–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386–394 (1971)

    Article  ADS  Google Scholar 

  14. Gaudin, M.: The Bethe Wavefunction. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  15. Gehles, K.E.: Properties of Cherednik Algebras and Graded Hecke Algebras. Ph.D. Thesis, University of Glasgow (2006)

  16. Groenevelt, W.: Multivariable Wilson polynomials and degenerate Hecke algebras. Selecta Math. (N.S.) 15, 377–418 (2009)

  17. Gutkin, E.: Integrable systems with delta-potential. Duke Math. J. 49, 1–21 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutkin, E., Sutherland, B.: Completely integrable systems and groups generated by reflections. Proc. Natl. Acad. Sci. USA 76, 6057–6059 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 2(145), 139–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Kaup, D.J.: Exact quantization of the nonlinear Schrödinger equation. J. Math. Phys. 16, 2036–2041 (1975)

    Article  ADS  Google Scholar 

  22. Klimyk, A., Schmüdgen, K.: Quantum Groups and their Representations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  23. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  24. Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173–246 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Korff, C., Stroppel, C.: The \(\widehat{\mathfrak{sl}}(n)_k\)-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Langmann, E.: Second quantization of the elliptic Calogero-Sutherland model. Commun. Math. Phys. 247, 321–351 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, B., Wang, Y.-S.: Exact solving \(q\) deformed boson model under open boundary condition. Mod. Phys. Lett. B 26, 1150008 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 2(130), 1605–1616 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, Art. B45a (2000/01)

  31. Macdonald, I.G.: Spherical functions on a \({\mathfrak{p}}\)-adic Chevalley group. Bull. Am. Math. Soc. 74, 520–525 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199, 161–174 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  34. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  35. Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  36. Nelsen, K., Ram, A.: Kostka–Foulkes polynomials and Macdonald spherical functions. In: Surveys in Combinatorics, C. D. Wensley (ed.), London Math. Soc. Lecture Note Ser. 307, Cambridge University Press, Cambridge, 2003, pp. 325–370

  37. Noumi, M.: Macdonald-Koornwinder polynomials and affine Hecke rings. RIMS Kôkyûroku 919, 44–55 (1995). (in Japanese)

    MathSciNet  MATH  Google Scholar 

  38. Oblomkov, A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. O’Connell, N., Pei, Y.: A \(q\)-weighted version of the Robinson–Schensted algorithm. Electron. J. Probab. 18(95), 1–25 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Parkinson, J.: Buildings and Hecke algebras. J. Algebra 297, 1–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Povolotsky, A.M.: On integrability of zero-range chipping models with factorized steady states. J. Phys. A: Math. Theor. 46, Paper 465205 (2013)

  42. Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun. Math. Phys. 228, 467–494 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. 2(150), 267–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057–6071 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Stokman, J.V.: Difference Fourier transforms for nonreduced root systems. Selecta Math. (N.S.) 9, 409–494 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A: Math. Theor. 47, Paper 465203 (2014)

  48. Thacker, H.B.: Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys. 53, 253–285 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  49. Tsilevich, N.V.: The quantum inverse scattering method for the \(q\)-boson model and symmetric functions. Funct. Anal. Appl. 40, 207–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. van Diejen, J.F., Emsiz, E.: Diagonalization of the infinite \(q\)-boson system. J. Funct. Anal. 266, 5801–5817 (2014)

  51. van Diejen, J.F., Emsiz, E.: Discrete harmonic analysis on a Weyl alcove. J. Funct. Anal. 265, 1981–2038 (2013)

  52. van Diejen, J.F., Emsiz, E.: Orthogonality of Bethe Ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove. Commun. Math. Phys. 350, 1017–1067 (2017)

  53. van Diejen, J.F., Emsiz, E.: Orthogonality of Macdonald polynomials with unitary parameters. Math. Z. 276, 517–542 (2014)

  54. van Diejen, J.F., Emsiz, E.: The semi-infinite \(q\)-boson system with boundary interaction. Lett. Math. Phys. 104, 103–113 (2014)

  55. van Diejen, J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267, 451–476 (2006)

  56. van Diejen, J.F.: On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls. Ann. Henri Poincaré 5, 135–168 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Adv. Math. 299, 543–600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115–1122 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Felipe van Diejen.

Additional information

Communicated by Jean-Michel Maillet.

This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants # 1170179, # 1141114 and # 3160646.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Diejen, J.F., Emsiz, E. & Zurrián, I.N. Completeness of the Bethe Ansatz for an Open \(\varvec{q}\)-Boson System with Integrable Boundary Interactions. Ann. Henri Poincaré 19, 1349–1384 (2018). https://doi.org/10.1007/s00023-018-0658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0658-6

Navigation