Advertisement

Annales Henri Poincaré

, Volume 19, Issue 5, pp 1385–1417 | Cite as

Super-Quantum Mechanics in the Integral Form Formalism

  • L. Castellani
  • R. Catenacci
  • P. A. Grassi
Article

Abstract

We reformulate super-quantum mechanics in the context of integral forms. This framework allows to interpolate between different actions for the same theory, connected by different choices of picture changing operators (PCO). In this way we retrieve component and superspace actions and prove their equivalence. The PCO are closed integral forms and can be interpreted as super-Poincaré duals of bosonic submanifolds embedded into a supermanifold. We use them to construct Lagrangians that are top integral forms, and therefore can be integrated on the whole supermanifold. The \(D=1, N=1\) and the \(D=1, N=2\) cases are studied, in a flat and in a curved supermanifold. In this formalism, we also consider coupling with gauge fields, Hilbert space of quantum states, and observables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varadarajan, V.S.: Supersymmetry for Mathematicians: An introduction Courant Lectures Notes. American Mathematical Society, Providence (2004)Google Scholar
  2. 2.
    Bartocci, C., Bruzzo, U., Hernandez-Ruiperez, D.: The Geometry of Supermanifolds. Kluvers Academic Publishers, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Freed, D.S.: Five Lectures on Supersymmetry. American Mathematical Society, Providence (1999)zbMATHGoogle Scholar
  4. 4.
    Fioresi, R., Lledo, M.A., Varadarajan, V.S.: The Minkowski and conformal superspaces. J. Math. Phys. 48, 113505 (2007). arXiv:math/0609813 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Catenacci, R., Debernardi, M., Grassi, P.A., Matessi, D.: Čech and de Rham cohomology of integral forms. J. Geom. Phys. 62, 890 (2012). arXiv:1003.2506 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Witten, E.: Notes on Supermanifolds and Integration. arXiv:1209.2199 [hep-th]
  7. 7.
    Witten, E.: Superstring Perturbation Theory Revisited. arXiv:1209.5461 [hep-th]
  8. 8.
    Berkovits, N.: Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring. JHEP 0409, 047 (2004). arXiv:hep-th/0406055 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Castellani, L., Catenacci, R., Grassi, P.A.: The geometry of supermanifolds and new supersymmetric actions. Nucl. Phys. B 899, 112 (2015). arXiv:1503.07886 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belopolsky, A.: Picture changing operators in supergeometry and superstring theory. arXiv:hep-th/9706033
  11. 11.
    Castellani, L., Catenacci, R., Grassi, P.A.: Integral representations on supermanifolds: super Hodge duals, PCOs and Liouville forms. Lett. Math. Phys. (2016). arXiv:1603.01092 [hep-th]
  12. 12.
    Voronov, T.: Geometric Integration Theory on Supermanifolds. Soviet Scientific Review, Section C: Mathematical Physics, Part 1 (Second Edition 2014), vol. 9. Harwood Academic Publisher, Chur (1991)Google Scholar
  13. 13.
    Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings: A Geometric Perspective, vol. 3. World Scientific, Singapore (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Castellani, L., Catenacci, R., Grassi, P.A.: JHEP10, 049, The integral form of supergravity (2016). arXiv:1607.05193 [hep-th]
  15. 15.
    Castellani, L., Catenacci, R., Grassi, P.A.: Supergravity actions with integral forms. Nucl. Phys. B 889, 419 (2014). arXiv:1409.0192 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Castellani, L., Catenacci, R., Grassi, P.A.: Hodge dualities on supermanifolds. Nucl. Phys. B 899, 570 (2015). arXiv:1507.01421 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Voronov, T.: On Volumes of Classical Supermanifolds. arXiv:1503.06542v1 [math.DG]
  18. 18.
    Sorokin, D.P.: Superbranes and superembeddings. Phys. Rept. 329, 1 (2000)Google Scholar
  19. 19.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry, Clay Mathematics Monographs. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. Castellani
    • 1
    • 2
    • 3
  • R. Catenacci
    • 1
    • 3
    • 4
  • P. A. Grassi
    • 1
    • 2
    • 3
    • 5
  1. 1.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly
  2. 2.INFN, Sezione di TorinoTurinItaly
  3. 3.Arnold-Regge CenterTurinItaly
  4. 4.Gruppo Nazionale di Fisica MatematicaINdAMRomeItaly
  5. 5.Center for Gravitational Physics Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations