Skip to main content
Log in

On the Relation of Lie Algebroids to Constrained Systems and their BV/BFV Formulation

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We observe that a system of irreducible, fiber-linear, first-class constraints on \(T^*M\) is equivalent to the definition of a foliation Lie algebroid over M. The BFV formulation of the constrained system is given by the Hamiltonian lift of the Vaintrob description (E[1], Q) of the Lie algebroid to its cotangent bundle \(T^*E[1]\). Affine deformations of the constraints are parametrized by the first Lie algebroid cohomology \(H^1_Q\) and lead to irreducible constraints also for much more general Lie algebroids such as Dirac structures; the modified BFV function follows by the addition of a representative of the deformation charge. Adding a Hamiltonian to the system corresponds to a metric g on M. Evolution invariance of the constraint surface introduces a connection \(\nabla \) on E and one reobtains the compatibility of g with \((E,\rho ,\nabla )\) found previously in the literature. The covariantization of the Hamiltonian to a function on \(T^*E[1]\) serves as a BFV-Hamiltonian, iff, in addition, this connection is compatible with the Lie algebroid structure, turning \((E,\rho ,[ \cdot , \cdot ],\nabla )\) into a Cartan–Lie algebroid. The BV formulation of the system is obtained from BFV by a (time-dependent) AKSZ procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, A., Strobl, T.: Current algebras and differential geometry. JHEP 0503, 035 (2005)

    Google Scholar 

  2. Alexandrov, M., Kontsevich, M., Schwartz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Barnich, G.: A note on gauge systems from the point of view of Lie algebroids. AIP Conf. Proc. 1307, 7 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Batalin, I.A., Vilkovisky, G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. B 69, 309 (1977)

    Article  ADS  Google Scholar 

  5. Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. Batalin, I.A., Vilkovisky, G.A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983). [Erratum-ibid. D 30, 508 (1984)]

  7. Batalin, I.A., Bering, K., Damgaard, P.H.: Superfield quantization. Nucl. Phys. B 515, 455 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Batalin, I.A., Bering, K., Damgaard, P.H.: Superfield formulation of the phase space path integral. Phys. Lett. B 446, 175 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Blaom, A.D.: Geometric structures as deformed infinitesimal symmetries. Trans. Am. Math. Soc. 358, 3651 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonelli, G., Zabzine, M.: From current algebras for p-branes to topological M-theory. JHEP 0509, 015 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cattaneo, A., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cattaneo, A., Felder, G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208(2), 521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chatzistavrakidis, A., Deser, A., Jonke, L., Strobl, T.: Strings in singular space-times and their universal gauge theory. Ann Henri Poincaré 18(8), 2641 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University Press, New York (1964)

    Google Scholar 

  16. Dorfman, I Ya.: Dirac structures of integrable evolution equations. Phys. Lett. A 125, 240 (1987)

  17. Fradkin, E.S., Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grigoriev, M.A., Damgaard, P.H.: Superfield BRST charge and the master action. Phys. Lett. B 474, 323 (2000)

    Article  ADS  Google Scholar 

  19. Grigoriev, M.A.: Parent formulations, frame-like Lagrangians, and generalized auxiliary fields. JHEP 1212, 048 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Henneaux, M., Teitelboim, C.: Quantization of gauge systems, p. 520. Princeton, Princeton University Press (1992)

    MATH  Google Scholar 

  21. Ikeda, N., Koizumi, K.: Current algebras and QP manifolds. Int. J. Geom. Meth. Mod. Phys. 10, 1350024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ikeda, N.: Lectures on AKSZ Sigma Models for Physicists. Noncommutative Geometry and Physics 4, Workshop on Strings, Membranes, and Topological Field Theory: World scientific, Singapore, p. 79, (2017)

  23. Ikeda, N., Strobl, T.: BV & BFV for the H-twisted Poisson sigma model and other surprises (in preparation)

  24. Klimcik, C., Strobl, T.: WZW-poisson manifolds. J. Geom. Phys. 43, 341 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kotov, A., Schaller, P., Strobl, T.: Dirac sigma models. Commun. Math. Phys. 260, 455 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kotov, A., Salnikov, V., Strobl, T.: 2d gauge theories and generalized geometry. JHEP 08, 021 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kotov, A., Strobl, T.: Gauging without initial symmetry. J. Geom. Phys. 99, 184 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kotov, A., Strobl, T.: Geometry on Lie algebroids I: compatible geometric structures on the base. arXiv:1603.04490 [math.DG]

  29. Kotov, A., Strobl, T.: Integration of quadratic Lie algebroids to Riemannian Cartan-Lie groupoids. Lett. Math. Phys. 108, 737–756 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Laurent-Gengoux, C., Lavau, S., Strobl, T.: The Lie infinity algebroid of a singular foliation (in preparation)

  31. Mayer, C., Strobl, T.: Lie algebroid Yang mills with matter fields. J. Geom. Phys. 59, 1613 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rinehart, G.: Differential forms for general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roytenberg, D.: AKSZ-BV formalism and courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S̆evera, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145 (2001)

  37. Vaintrob, A.: Lie algebroids and homological vector fields. Uspekhi Math. Nauk 52(2), 161–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zabzine, M.: Lectures on generalized complex geometry and supersymmetry. Arch. Math. 42, 119 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T.S. wants to thank Anton Alekseev for a long-lasting and multiply inspiring friendship. N.I. thanks Anton Alekseev and the university of Geneva for the permission of his staying as a visiting scientist and their hospitality. We gratefully acknowledge the interest and critical and important feedback of Albin Grataloup and Sylvain Lavau on earlier versions of this paper. We also thank Camille Laurent–Gengoux for remarks on the manuscript and Maxim Grigoriev for drawing our attention to the references [18, 19] and [3]. This work was supported by the project MODFLAT of the European Research Council (ERC) and the NCCR SwissMAP of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Ikeda.

Additional information

Communicated by Krzysztof Gawedzki.

Dedicated to the 50th birthday of Anton Alekseev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, N., Strobl, T. On the Relation of Lie Algebroids to Constrained Systems and their BV/BFV Formulation . Ann. Henri Poincaré 20, 527–541 (2019). https://doi.org/10.1007/s00023-018-00754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-00754-3

Navigation