Skip to main content
Log in

The cone metric of a Busemann space

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

We introduce a metric \(d_c\) on the Busemann space (Xd) such that the horofunction compactification of the space \((X, d_c)\) is equivalent to the geodesic compactification of the initial space. The space \((X, d_c)\) is not geodesic in general. It is shown that \((X, d_c)\) is geodesic if and only if X is a real tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, P.: Semilinear metric semilattices on \(\,\mathbb{R}\) -trees. Russian Math. (Iz. VUZ) 51(6), 1–10 (2007)

  2. Andreev, P.: Geometry of ideal boundaries of geodesic spaces with nonpositive curvature in the sense of Busemann. Sib. Adv. Math. 18(2), 95–102 (2008)

    Article  Google Scholar 

  3. Ball, B.J., Yokura, S.: Compactifications determined by subsets of \(\,C^\ast (X)\). Topology Appl. 13(1), 1–13 (1982)

  4. Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1940)

    Book  MATH  Google Scholar 

  5. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., vol. 319. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Busemann, H.: The Geometry of Geodesics. Academic Press Inc., New York (1955)

    MATH  Google Scholar 

  7. Chandler, R.E.: Hausdorff compactifications. Lecture Notes in Pure and Applied Mathematics, vol. 23. Marcel Dekker Inc, New York (1976)

  8. Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton (1960)

  9. Gromov, M.: Hyperbolic manifolds, groups and actions. In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), pp. 183–213, Ann. Math. Stud., 97, Princeton University Press, Princeton, NJ

  10. Hotchkiss, P.K.: The boundary of a Busemann space. Proc. Am. Math. Soc. 125(7), 1903–1912 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Papadopoulos, A.: Metric spaces, convexity and non-positive curvature. Second edition, IRMA Lectures in Mathematics and Theoretical Physics, 6, EMS, Zürich (2014)

  12. Rieffel, M.: Group \(\,C^\ast \) -algebras as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002)

  13. Walsh, C.: Horofunction boundary of finite-dimensional normed space. Math Proc. Camb. Philos. Soc. 142(3), 497–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Andreev.

Additional information

The work was supported by RFBR, Grant 14-01-00219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, P. The cone metric of a Busemann space. J. Geom. 109, 25 (2018). https://doi.org/10.1007/s00022-018-0430-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-018-0430-6

Keywords

Mathematics Subject Classification

Navigation