Advertisement

Journal of Geometry

, 109:20 | Cite as

A compactness theorem in Riemannian manifolds

  • Yasemin Soylu
Article

Abstract

In this paper, we use the m-Bakry–Émery Ricci tensor on a complete n-dimensional Riemannian manifold to obtain a compactness theorem including a diameter estimate. The proof is based on the Riccati comparison theorem.

Keywords

Diameter estimate Distance function Riccati comparison theorem 

Mathematics Subject Classification

Primary 53C20 53C21 

References

  1. 1.
    Barros, A., Ribeiro, E.: Integral formulae on quasi-Einstein manifolds and applications. Glasg. Math. J. 54, 213–223 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, Kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kuwada, K.: A probabilistic approach to the maximal diameter theorem. Math. Nachr. 286, 374–378 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95, 191–199 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Limoncu, M.: The Bakry–Emery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Qian, Z.: Estimates for weighted volumes and applications. Q. J. Math. Oxf. 48, 235–242 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ruan, Q.: Two rigidity theorems on manifolds with Bakry–Emery Ricci curvature. Proc. Jpn. Acad. Ser. A 85, 71–74 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, L.F.: A Myers theorem via m-Bakry–Émery curvature. Kodai Math. J. 37, 187–195 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhu, S.: The comparison geometry of Ricci curvature. Comp. Geom MSRI Publ. 30, 221–262 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsGiresun UniversityGiresunTurkey

Personalised recommendations