Advertisement

Journal of Geometry

, 109:22 | Cite as

Straight projective-metric spaces with centres

  • Árpád Kurusa
Article
  • 25 Downloads

Abstract

It is proved that a straight projective-metric space has an open set of centres, if and only if it is either the hyperbolic or a Minkowskian geometry. It is also shown that if a straight projective-metric space has some finitely many well-placed centres, then it is either the hyperbolic or a Minkowskian geometry.

Keywords

Projective-metric Central symmetry Minkowski geometry Hilbert geometry 

Mathematics Subject Classification

51F99 53A35 52A20 

References

  1. 1.
    Busemann, H., Kelly, P.J.: Projective Geometries and Projective Metrics. Academic Press, New York (1953)zbMATHGoogle Scholar
  2. 2.
    Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)zbMATHGoogle Scholar
  3. 3.
    Busemann, H.: Recent Synthetic Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 54. Springer, New York (1970)CrossRefGoogle Scholar
  4. 4.
    C̆ap, A., Cowling, M.G., de Mari, F., Eastwood, M., McCallum, R.: The Heisenberg Group, SL(3, R), and Rigidity, Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lecture Notes Series, Institute of Mathematical Sciences, National University of Singapore, vol. 12. World Scientific, New Jersey–London (2007)Google Scholar
  5. 5.
    Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields. Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Kelly, P.J., Straus, E.: Curvature in Hilbert geometries. Pac. J. Math. 8, 119–125 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Montejano, L., Morales, E.: Characterization of ellipsoids and polarity in convex sets. Mathematika 50, 63–72 (2003).  https://doi.org/10.1112/S0025579300014790 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Szabó, Z.I.: Hilbert’s fourth problem. I. Adv. Math. 59:3, 185–301 (1986).  https://doi.org/10.1016/0001-8708(86)90056-3 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations