The number of different reduced complete sets of MOLS corresponding to PG \(\varvec{(2,q)}\)
Article
First Online:
Received:
Revised:
- 20 Downloads
Abstract
In the first part of this article we determine the exact number of different reduced complete sets of mutually orthogonal latin squares (MOLS) of order q, for \(q = p^d\), p prime, \(d \ge 1\), corresponding to the Desarguesian projective planes PG(2, q). In the second part we provide some computational results and enumerate the maximal sets of reduced latin squares of order n as part of a set containing exactly r MOLS.
Keywords
Computations Desarguesian projective planes latin squares mutually orthogonal latin squaresMathematics Subject Classification
05B15 05B25 51E15References
- 1.Berger, T.: Classification des groupes de permutations d’un corps fini contenant le groupe affine. C. R. Acad. des Sciences de Paris Ser. I 319, 117–119 (1994)MathSciNetMATHGoogle Scholar
- 2.Bose, R.C.: On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares. Sankhy\(\bar{\text{a}}\) 3, 323–338 (1938)Google Scholar
- 3.Bruen, A.A.: Unembeddable nets of small deficiency. Pac. J. Math. 43, 51–54 (1972)MathSciNetCrossRefMATHGoogle Scholar
- 4.Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press, Taylor and Francis Group, Boca Raton (2007)MATHGoogle Scholar
- 5.Danziger, P., Wanless, I.M., Webb, B.S.: Monogamous latin squares. J. Combin. Theory Ser. A 118, 796–807 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 6.Deńes, J., Keedwell, A.D.: Latin Squares and Their Applications. Academic Press, New York (1974)MATHGoogle Scholar
- 7.Drake, D.A., Myrvold, W.: The non-existence of maximal sets of four mutually orthogonal latin squares of order 8. Des. Codes Cryptogr. 33, 63–69 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 8.Drake, D.A., van Rees, G.H.J., Wallis, W.D.: Maximal sets of mutually orthogonal latin squares. Discrete Math. 194, 87–94 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 9.Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Math. Comput. 85, 799–824 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 10.Hedayat, A., Federer, W.T.: On embedding and enumeration of orthogonal latin squares. Ann. Math. Stat. 42, 509–516 (1971)MathSciNetCrossRefMATHGoogle Scholar
- 11.Lam, C.W.H., Kolesova, G., Thiel, L.: A computer search for finite projective planes of order 9. Discrete Math. 92, 187–195 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 12.Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)MATHGoogle Scholar
- 13.Liebeck, M.W., Praeger, C.E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111, 365–383 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 14.McKay, B.D., Wanless, I.M.: On the number of latin squares. Ann. Comb. 9, 335–344 (2005)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018