Journal of Geometry

, 109:5 | Cite as

The number of different reduced complete sets of MOLS corresponding to PG \(\varvec{(2,q)}\)

  • K. H. Hicks
  • G. L. Mullen
  • L. Storme
  • J. Vanpoucke
Article
  • 20 Downloads

Abstract

In the first part of this article we determine the exact number of different reduced complete sets of mutually orthogonal latin squares (MOLS) of order q, for \(q = p^d\), p prime, \(d \ge 1\), corresponding to the Desarguesian projective planes PG(2, q). In the second part we provide some computational results and enumerate the maximal sets of reduced latin squares of order n as part of a set containing exactly r MOLS.

Keywords

Computations Desarguesian projective planes latin squares mutually orthogonal latin squares 

Mathematics Subject Classification

05B15 05B25 51E15 

References

  1. 1.
    Berger, T.: Classification des groupes de permutations d’un corps fini contenant le groupe affine. C. R. Acad. des Sciences de Paris Ser. I 319, 117–119 (1994)MathSciNetMATHGoogle Scholar
  2. 2.
    Bose, R.C.: On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares. Sankhy\(\bar{\text{a}}\) 3, 323–338 (1938)Google Scholar
  3. 3.
    Bruen, A.A.: Unembeddable nets of small deficiency. Pac. J. Math. 43, 51–54 (1972)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press, Taylor and Francis Group, Boca Raton (2007)MATHGoogle Scholar
  5. 5.
    Danziger, P., Wanless, I.M., Webb, B.S.: Monogamous latin squares. J. Combin. Theory Ser. A 118, 796–807 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Deńes, J., Keedwell, A.D.: Latin Squares and Their Applications. Academic Press, New York (1974)MATHGoogle Scholar
  7. 7.
    Drake, D.A., Myrvold, W.: The non-existence of maximal sets of four mutually orthogonal latin squares of order 8. Des. Codes Cryptogr. 33, 63–69 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Drake, D.A., van Rees, G.H.J., Wallis, W.D.: Maximal sets of mutually orthogonal latin squares. Discrete Math. 194, 87–94 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Math. Comput. 85, 799–824 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hedayat, A., Federer, W.T.: On embedding and enumeration of orthogonal latin squares. Ann. Math. Stat. 42, 509–516 (1971)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lam, C.W.H., Kolesova, G., Thiel, L.: A computer search for finite projective planes of order 9. Discrete Math. 92, 187–195 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)MATHGoogle Scholar
  13. 13.
    Liebeck, M.W., Praeger, C.E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111, 365–383 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    McKay, B.D., Wanless, I.M.: On the number of latin squares. Ann. Comb. 9, 335–344 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsOhio UniversityAthensUSA
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of MathematicsGhent UniversityGhentBelgium
  4. 4.Department of Mathematics, Faculty of EngineeringVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations