Skip to main content
Log in

Wellposedness and Convergence of Solutions to a Class of Forced Non-diffusive Equations with Applications

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 20 July 2021

This article has been updated

Abstract

This paper considers a family of non-diffusive active scalar equations where a viscosity type parameter enters the equations via the constitutive law that relates the drift velocity with the scalar field. The resulting operator is smooth when the viscosity is present but singular when the viscosity is zero. We obtain Gevrey-class local well-posedness results and convergence of solutions as the viscosity vanishes. We apply our results to two examples that are derived from physical systems: firstly a model for magnetostrophic turbulence in the Earth’s fluid core and secondly flow in a porous media with an “effective viscosity”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. For simplicity, we sometime write and .

References

  1. Azzam, J., Bedrossian, J.: Bounded mean oscillation and the uniqueness of active scalar equations. Trans. Am. Math. Soc. 367(5), 3095–3118 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften 343. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Bernicot, F., Keraani, S.: On the global wellposedness of the 2D Euler equation for a large class of Yudovich type data. Annales scientifiques de l’ENS 47, fascicule 3, 559–576 (2014)

    MATH  Google Scholar 

  4. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27 (1949)

    Article  Google Scholar 

  5. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  6. Córdoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011)

    Article  MathSciNet  Google Scholar 

  7. Córdoba, D., Gancedo, F., Orive, R.: Analytical behavior of two-dimensional incompressible flow in porous media. J. Math. Phys. 48(6), 065206 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 159–180 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Friedlander, S., Gancedo, F., Sun, W., Vicol, Vlad: On a singular incompressible porous media equation. J. Math. Phys. 53, 115602 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Friedlander, S., Rusin, W., Vicol, V.: On the supercritically diffusive magnetogeostrophic equations. Nonlinearity 25(11), 3071–3097 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Friedlander, S., Rusin, W., Vicol, V.: The magnetogeostrophic equations: a survey. In: Apushkinskaya, D., Nazarov, A.I. (eds.) Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations, pp. 53–78. AMS Translations, vol. 232 (2014)

  13. Friedlander, S., Suen, A.: Existence, uniqueness, regularity and instability results for the viscous magnetogeostrophic equation. Nonlinearity 28(9), 3193–3217 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Friedlander, S., Suen, A.: Solutions to a class of forced drift-diffusion equations with applications to the magnetogeostrophic equations. Ann. PDE 4(2), 14 (2018)

    Article  Google Scholar 

  15. Friedlander, S., Vicol, V.: Global well-posedness for an advection-diffusion equation arising in magnetogeostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 283–301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Friedlander, S., Vicol, V.: On the ill/wellposedness and nonlinear instability of the magnetogeostrophic equations. Nonlinearity 24(11), 3019–3042 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kukavica, I., Vicol, V., Wang, F.: On the ill-posedness of active scalar equations with odd singular kernels. In: New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the Eighth Congress of Romanian Mathematicians (2016)

  19. Moffatt, H.K., Loper, D.E.: The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117(2), 394–402 (1994)

    Article  ADS  Google Scholar 

  20. Paicu, M., Vicol, V.: Analyticity and Gevrey-class regularity for the second-grade fluid equations. J. Math. Fluid Mech. 13(4), 533–555 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  22. Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago (1995)

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Function. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin (1989)

    Book  Google Scholar 

Download references

Acknowledgements

S. Friedlander is supported by NSF DMS-1613135 and A. Suen is supported by Hong Kong Early Career Scheme (ECS) Grant Project Number 28300016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Suen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlander, S., Suen, A. Wellposedness and Convergence of Solutions to a Class of Forced Non-diffusive Equations with Applications. J. Math. Fluid Mech. 21, 50 (2019). https://doi.org/10.1007/s00021-019-0454-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0454-1

Keywords

Mathematics Subject Classification

Navigation