Skip to main content
Log in

Boundary Partial \(C^{1, \alpha }\)-Regularity for Stationary Shear Thickening Flows in 3D

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we prove boundary partial regularity result for weak solutions to systems describing stationary shear thickening flows in 3D smooth domains. We show that the weak solution is in \(C^{1,\,\alpha }\) with any \(\alpha \in (0,\,1)\) in a neighbourhood of almost all boundary points. In particular, we show that for the regularity criterion at the boundary, only the normal derivative is of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  2. Apushkinskaya, D., Bildhauer, M., Fuchs, M.: Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7, 261–297 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Astarita, G., Marucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974)

    Google Scholar 

  4. Bae, H.-O., Wolf, J.: Boundary regularity for the steady Stokes type flow with shear thickening viscosity. J. Differ. Equ. 258, 3811–3850 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beck, L.: Boundary regularity results for weak solutions of subquadratic elliptic systems. Ph.D. thesis, Universitat Erlangen-Nurnberg (2008)

  6. Beck, L.: Elliptic Regularity Theory. Lecture Notes of the Unione Matematica Italiana, vol. 19. Springer, Berlin (2016)

    MATH  Google Scholar 

  7. Beirão da Veiga, H.: On the global regularity of shear thinning flows in smooth domains. J. Math. Anal. Appl. 349, 335–360 (2009)

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, H., Crispo, F.: On the global \(W^{2, q}\) regularity for nonlinear \(N\)-systems of the \(p\)-Laplacian type in n space variables. Nonlinear Anal. 7(5), 4346–4354 (2012)

    Article  Google Scholar 

  9. Beirão da Veiga, H., Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13, 387–404 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bildhauer, M., Fuchs, M.: Variants of the Stokes problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5, 364–402 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Breit, D.: Analysis of generalized Navier–Stokes equations for stationary shear thickening flows. Nonlinear Anal. 75, 5549–5560 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Breit, D., Fuchs, M.: The nonlinear Stokes problem with general potentials having superquadratic growth. J. Math. Fluid Mech. 13, 371–385 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Carozza, M., Fusco, N., Mingione, G.: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 175, 141–164 (1998)

    Article  MathSciNet  Google Scholar 

  14. Crispo, F., Grisanti, C.R.: On the existence, uniqueness and \(C^{1,\gamma }(\overline{\Omega })\cap W^{2, 2}(\Omega )\) regularity for a class of shear-thinning fluids. J. Math. Fluid Mech. 10, 455–487 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Crispo, F., Grisanti, C.R.: On the \(C^{1,\gamma }(\overline{\Omega })\cap W^{2, 2}(\Omega )\) regularity for a class of electrorheological fluids. J. Math. Anal. Appl. 356, 119–132 (2009)

    Article  MathSciNet  Google Scholar 

  16. Crispo, F., Maremonti, P.: A high regularity result of solutions to modified p-Stokes equations. Nonlinear Anal. 118, 97–129 (2015)

    Article  MathSciNet  Google Scholar 

  17. Duzaar, F., Kristensen, J., Mingione, G.: The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602, 17–58 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Grotowski, J.F.: Boundary regularity results for nonlinear elliptic systems. Calc. Var. 15, 353–388 (2002)

    Article  MathSciNet  Google Scholar 

  19. Frehse, J., Málek, J., Steinhauer, M.: An existence result for fluids with shear dependent viscosity: steady flows. Nonlinear Anal. 30, 3041–3049 (1997)

    Article  MathSciNet  Google Scholar 

  20. Frehse, J., Malek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

    Article  MathSciNet  Google Scholar 

  21. Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Springer Lecture Notes in Mathematics, vol. 1749. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Fuchs, M.: Stationary flows of shear thickening fluids in 2D. J. Math. Fluid Mech. 14, 43–54 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations; Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  24. Giaquinta, M.: A counter-example to the boundary regularity of solutions to elliptic quasilinear systems. Manuscr. Math. 24, 217–220 (1978)

    Article  MathSciNet  Google Scholar 

  25. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  26. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  Google Scholar 

  27. Irgens, F.: Rheology and Non-Newtonian Fluids. Springer, Berlin (2014)

    Book  Google Scholar 

  28. Kaplický, P., Málek, J., Stará, J.: \(C^{1, \alpha }\)-Solutions to a class of nonlinear fluids in 2D stationary Dirichlet problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259, 89–121 (1999). [Translation in J. Math. Sci. (New York) 109, 1867–1893 (2002)]

    MATH  Google Scholar 

  29. Kaplický, P.: Regularity of flow of anisotropic fluid. J. Math. Fluid Mech. 10, 71–88 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kristensen, J., Mingione, G.: Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198, 369–455 (2010)

    Article  MathSciNet  Google Scholar 

  31. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York (1969)

    MATH  Google Scholar 

  32. Lions, J.L.: Quelques methodes de resolution des problemes aux limites non lineairesm. Dunod, Malakoff (1969)

    MATH  Google Scholar 

  33. Růžička, M.: A note on steady flow of fluids with shear dependent viscosity. Nonlinear Anal. 30, 3029–3039 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referee for their valuable suggestions to improve the quality of this paper and to make the presentation more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cholmin Sin.

Ethics declarations

Conflict of interest

No conflict of interest to be declared by the author.

Additional information

Communicated by G.P. Galdi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, C. Boundary Partial \(C^{1, \alpha }\)-Regularity for Stationary Shear Thickening Flows in 3D. J. Math. Fluid Mech. 20, 1617–1639 (2018). https://doi.org/10.1007/s00021-018-0379-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0379-0

Keywords

Mathematics Subject Classification

Navigation