Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity

  • Fei Jiang


We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild’s (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.


Compressible Navier–Stokes–Fourier equations Bénard problem thermal instability Hadamard sense 

Mathematics Subject Classification

Primary 76E06 Secondary 76E19 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., John, J.F.F.: Sobolev Space. Academic Press, New York (2005)Google Scholar
  2. 2.
    Aye, P., Nishida, T.: Heat convection of compressible fluid. In: Fujita, H. (ed.) Recent Developments in Domain Decomposition Methods and Flow Problems, Mathematical Sciences and Applications, vol. 11, pp. 107–115. Gakkotosho, Tokyo (1998)Google Scholar
  3. 3.
    Benardand, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pures Appl. 45, 1261-71–1309-28 (1900)Google Scholar
  4. 4.
    Cattaneo, F., Brummell, N., Toomre, J., Malagoli, A., Hurlburt, N.: Turbulent compressible convection. Astrophys. J. 370, 282–294 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Chandrasekhar, S.: An Introduction to the Study of Stellar Structures. University of Chicago Press, Chicago (1939)zbMATHGoogle Scholar
  6. 6.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)Google Scholar
  7. 7.
    Coscia, V., Padula, M.: Nonlinear energy stability in a compressible atmosphere. Geophys. Astrophys. Fluid. Dyn. 54, 49–83 (1990)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Field, G.B.: Thermal instability. Astrophys. J. 142, 531–567 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. Henri Poincare(C) Non Linear Anal. 14, 187–209 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friedlander, S., Vishik, M.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243, 261–273 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Galdi, G.P.: The rotating Bénard problem: a nonlinear energy stability analysis (Rome, 1984), Teubner, Stuttgart. In: Applications of Mathematics in Technology, pp. 79–95 (1984)Google Scholar
  13. 13.
    Galdi, G.P.: Nonlinear stability of the magnetic Bénard problem via a generalized energy method. Arch. Ration. Mech. Anal. 62(2), 167–186 (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Galdi, G.P., Padula, M.: New contributions to nonlinear stability of the magnetic Bénard problem. In: Applications of Mathematics in Industry and Technology (Siena, 1988), Teubner, Stuttgart, pp. 166–178 (1989)Google Scholar
  15. 15.
    Galdi, G.P., Padula, M.: Further results in the nonlinear stability of the magnetic Bénard problem. In: Mathematical Aspects of Fluid and Plasma Dynamics (Salice Terme, 1988), Lecture Notes in Mathematics, vol. 1460, Springer, Berlin (1991)Google Scholar
  16. 16.
    Galdi, G.P., Straughan, B.: A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. Proc. R. Soc. Lond. Ser. A 402(1823), 257–283 (1985)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Gough, D.O., Moore, D.R., Spiegel, E.A., Weiss, N.O.: Convective instability in a compressible atmosphere II. Astrophys. J. 206, 536–542 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Graham, E.: Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689 (1975)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Guidoboni, G., Padula, M.: On the Bénard problem. Prog. Nonlinear Differ. Equ. Appl. 61, 137–148 (2005)zbMATHGoogle Scholar
  20. 20.
    Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270, 635–689 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Guo, Y., Han, Y.Q.: Critical Rayleigh number in Rayleigh–Bénard convection. Quart. Appl. Math. LXVIII, 149–160 (2010)zbMATHGoogle Scholar
  22. 22.
    Guo, Y., Strauss, W.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hwang, H.J., Guo, Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167, 235–253 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jang, J., Tice, I.: Instability theory of the Navier–Stokes–Poisson equations. Anal. PDE 6, 1121–1181 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jeffreys, H.: The instability of a compressible fluid heated below. Proc. Camb. Philos. Soc. 26, 170–172 (1930)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity flows in a bounded domain. Adv. Math. 264, 831–863 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jiang, F., Jiang, S., Wang, Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Joseph, D.D.: Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Ration. Mech. Anal. 22, 163–184 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kaniel, S., Kovetz, A.: Schwarzschild’s criterion for instability. Phys. Fluids 10, 1186–1193 (1967)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Ph. D. Thesis, Kyoto University (1983)Google Scholar
  32. 32.
    Lebovitz, N.R.: On the necessity of schwarzshild’s criterion for stability. Astrophys. J. 146, 946–949 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    Ma, T., Wang, S.: Dynamic bifurcation and stability in the Rayleigh–Bénard convection. Commun. Math. Sci. 2, 159–183 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Matsumura, A., Nishida, T.: The initial value problem for the equation of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser A 55, 337–342 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of general fluids, computing methods in applied sciences and engineering. J. Math. Kyoto. Univ. V (Versailles, 1981) 20, 389–406 (1982)Google Scholar
  36. 36.
    Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nishida, T., Padula, M., Teramoto, Y.: Heat convection of compressible viscous fluids. I. J. Math. Fluid Mech. 15, 525–536 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nishida, T., Padula, M., Teramoto, Y.: Heat convection of compressible viscous fluids. II. J. Math. Fluid Mech. 15, 689–700 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Novotnỳ, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  40. 40.
    Padula, M., Bollettmo, U.M.I.: Nonlinear energy stability for the compressible Bénard problem. Boll. Un. Mat. Ital. B 5B, 581–602 (1986)zbMATHGoogle Scholar
  41. 41.
    Rayleigh, L.: On convective currants in a horizontal layer of fluid when the higher termperature is on the under side. Philos. Mag. 32, 529–546 (1916)CrossRefzbMATHGoogle Scholar
  42. 42.
    Rosencrans, S.: On Schwarzschild’s criterion. SIAM J. Appl. Math. 17, 231–239 (1969)CrossRefzbMATHGoogle Scholar
  43. 43.
    Rumford, C.: Of the Propagation of Heat in Fluids, Complete Works, vol. 1, p. 239. American Academy of Arts and Sciences, Boston (1870)Google Scholar
  44. 44.
    Schwarzschild, K.: Über das gleichgewicht der sonnenatmosphäre. Nachr. Kgl. Ges. Wiss. Göttingen Math. Phys. Klasse 1906, 41–53 (1906)zbMATHGoogle Scholar
  45. 45.
    Schwarzschild, M.: Convection in stars. Astrophys. J. 134(1), 1–8 (1961)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Spiegel, E.A.: Convective instability in a compressible atmosphere I. Astrophys. J. 141, 1068–1090 (1965)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Thompson, J.: On a changing tesselated.structure in certain liquids. Pro. Phil. Soc. Glasg. 13, 464–468 (1882)Google Scholar
  48. 48.
    Unno, W., Kato, S., Makita, M.: Convective instability in polytropic atmosphere. I. Pub. Astr. Soc. Jpn. 12(2), 192–202 (1960)ADSGoogle Scholar
  49. 49.
    Xi, X.Y., Guo, B.L., Xie, B.Q., Fang, S.M.: Nonlinear thermal instability in the magnetohydrodynamics problem without heat conductivity. J. Differ. Equ. 263, 6635–6683 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina

Personalised recommendations